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A NOTE ON NORM-ATTAINING FUNCTIONALS 

LUD£K ZAJICEK, Praha 

(Received March 30, 1979) 

Let X be a real Banach space. We say that x* e X* is a norm-attaining functional 
if there exists xeX such that ||x|| = 1 and x*(x) = ||x*||. It is well-known that X 
is reflexive iff all x* e X* are norm-attaining. On the other hand, E. Bishop and R. R. 
Phelps [l] proved that in X* there exists always a dense subset of norm-attaining 
functionals. In the Problem Book of the 5th Winter School in Abstract Analysis 
(Krkonose, 1978), V. Zizler raised the following problem. 

Problem. LetX be an arbitrary Banach space and y eX* an arbitrary functional. 
Do there exist norm-attaining functionals ym n = 1, 2,.. . , such that yn -> y and 
all yn lie on one line? 

In the present note we give the negative answer to this Problem. Thus the Bishop-
Phelps theorem cannot be strengthened in the sense of the Problem. The only result 
of the present note is the following theorem. 

Theorem. Let M(<0,1>) = (C(<0, 1>))* be the space of Radon measures on 
<0, 1>. Then the set of all p e M(<0, 1>) for which there exists v 4= 0 and Xn \ 0 
such that p. + Xn\ are norm-attaining functionals on C(<0, 1>) is a set of the first 
category in M(<0,1>). 

In the following we use the terminology of N. Bourbaki [2]. The support of a mea
sure p will be denoted by S(p). We shall need the following easy well-known proposi
tion. Since"! have not been able to find a reference, I give a proof. 

Proposition. Let jzeM(<0,1>) and S(p+) n S(p~) 4= 0. Then p is not a norm-
attaining functional on C(<0,1>). 

Proof. Suppose on the contrary that for an fe C(<0, 1» we have ||f|| = 1 and 
Kf) = IH|. L e t a e s(v+) n S(/x-), Then either f(a).< 1 or f(a) > - 1 . We shall 
distinguish these two cases. 

(i) If f(a)< 1, then 

M/) - »+(n - »+(n - *-(n + /*-(/-) = ^(/+) + *-(/-) -
168 



By Proposition 9, Chap. Ill, § 3 of [2] wehave/i+(l) - /x+(/+) = n+(l - / + ) > 0 
and therefore n(f) ^ M+(/+) + M~(/~) < A*+(l) + P~0) ~= INI- This is a contra
diction. 

(ii) If f(a) > 1 then ju~(l - / " ) = /*~(1) - A*~(/~) > ° a n c l w e obtain a contra
diction similarly as in the preceding case. 

Proof of Theorem, (i) First we shall prove that if n e M(<0, 1>) and S(fi+) = 
= S(fi~) = <0,1>, then v and (Xn) from the statement of Theorem do not exist. 
Suppose on the contrary that /x, v, (kn) with the properties mentioned above are given. 
For a sufficiently large n we obtain easily that 

S((v + Xnv)+) 4= 0 and S(Qi + ^v)") 4= 0 . 

By Proposition, S((fi + Xnv)+) n S((fi + Anv)~) = 0 and therefore there exists an 
open interval I c <0, 1> such that I n S((/* + Anv)+) = 0 and I n S((iU + Xnv)~) = 
= 0. Le t /e C(<0, 1>) be a function with its support in /. If k =t= n, then 

(1) (n + A*v) (/) = (/, + Anv) (/) + (Xk - A.) v(f) = (Afc - A.) v(/) . 

Since (/x + Xnv) (/) = /*(/) + Xn v(f) = 0 we have v(/) = -/</)/%,. Thus we obtain 
from (1) (fi + Afcv)(/) = X;x(Xn - Afc)/*(/). Therefore we have S((fi + Xkv)+) n 
n / = S((/i + Akv)~) c\I = I and this is a contradiction with Proposition. 

(ii) We shall prove that the set 

A = M«0, 1 » \ {ii € M«0, 1»; % t ) = S(/x~) = <0, 1>} 
is a set of the first category in M(<0, 1>). In fact, 

A = [j{A+ u A"; r < s and r, s are rational} , 

where A+ and Ar~ are the sets of all measures \i e M(<0, 1>) for which S(fi+) n 
n (r, s) = 0 and S(fi~) n (r, s) = 0, respectively. The sets A+, A~ are obviously 
closed nowhere dense subsets of M(<0, 1>). Theorem is proved. 
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