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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

A NOTE ON TOLERANCE LATTICES OF PRODUCTS OF LATTICES 

JOSEF NlEDERLE, BmO 

(Received August 15, 1979) 

It is shown that the tolerance lattice of the product of a finite number of lattices 
is isomorphic to the product of their tolerance lattices. 

Lemma 1. Let L,LUL2 be lattices, L=- Lx x L2. Then for any compatible 
tolerance T on L the following conditions are equivalent for each pair a,b e Lx: 

(i) there exist u,ve L2 such that [a, u] T[b, v]; 

(ii) there exists xe L2 such that [a, x] T[b, x]; 

(iii) [a, y] T[b, y] for each y e L2. 

Proof. The proof will be omitted. 

Lemma 2. Let L, Lu L2 be lattices, L = Lx x L2. If T is a compatible tolerance 
on the lattice L, thenfL(T) defined by 

afi(T) b :<> [tf> x]T[b9 x] for each xe L2 

and f2(T) defined by 

cf2(T)d:o[y,c]T[y,d] for each y e Lt 

are compatible tolerances on LY and L2, respectively. The maps ft : TL(L) -> 
-» TL(L^ and f2 : TL(L) -> TL(L2) are lattice homomorphisms. 

Proof. The proof will be done for fv fi(T) is obviously a tolerance relation. 
Let axfx(T) bt and a2ft(T) b2. Then [au x] T[bu x] and [a2, x] T[b2, x] for each 
xeL2. It follows that [at A a2, x] T[bx A b2, x] and [a x v a2,x] T[bxv b2,x], 
hence (ax A a2)fl(T)(b1 A b2) and (at v a2)fl(T)(bl v b2). Thus j\(T) is 
a compatible tolerance on Lx. Now, let S, Te TL{L). Obviously fx(S A T) = 
= fi(S) A fx(T). aft(S v T)bo [a, x] (S v T) [b, x] for each xeL2o there 
exists >>eL2 such that [t f ,y](S v T) [b, y] <*> there exist yeL2, a lattice poly-
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nomial p and ordered pairs [al9 w j , . . . , [an9 un]9 [bl9 vx],..., [b„, vn] e Lsuch that 
[ai9 ut] S[bi9 vf] or [ai9 u(] T[bi91\] and [a, y] = p([al9 uj, ..., [a„, un]) and 
[b, j;] = p([b1? vx], ..., [b„, vj)<=>there exist yeL2, a lattice polynomial p and 
a1? ..., a„, bi, ..., bw e L1? yx, . . . . yn e L2 such that [ai9 yL] S[bi9 yt] or [ai9 yi] . 
• -T[b„ >',] and [a, j ] = p([al9 v j , ..., [a.,, v„]) and [b, y] = p([bl9 yt]9 ... 
..., [bn, j„] o there exists a lattice polynominal p and a l5 ..., an9 bl99 ... bneLt 

such that atft(S) b; or aif^T) b( and a = p(a1?..., a„) and b = p(b1? ..., b„)<-> 
o ^ / i ^ v / ^ T p . Q.E.D. 

Proposition. For lattices L9Ll9L2, L= Lt x L2 implies TL(L) = TL(L{) x 
x TL(L2). 

Proof. Define a map / : TL(L) -> TL(LX) x TL(L2) by the rule f(T) = 
~ [/i(^)> Av-O]- The map / is obviously a lattice homomorphism. Let 
[Tl9 T2] be an arbitrary element of TL(Lt) x TL(L2). Construct a relation Ton L 
by [a, b] T[c9 d] :o aTxc and bT2d. Clearly, T is a compatible tolerance on L. 
We have/(T) = [Tl9 T2], and so / i s onto. Now, let/(S) = f(T). Then [a, b] S[c, d] 
implies [a, x] T[c9 x] for each x e L2 and [y, b] T[y9 d] for each y eLv Hence 
[a, b A d] T[c, b A d] and [a A C, b] T[a A C9 d] and so [a, b] T[c. d]. Thus 
S = T. Analogously T — S9 hence S = T The lattice homomorphism / is onto and 
injective and so a lattice isomorphism. Q.E.D. 

Corollary. Let L9Ll9..., L;, be lattices, ne N9 L = L t x ... x Ln. Then TL(L) £ 
^ T L ( L x ) x ... x TL(L„). 

Remark. The finiteness of number of direct factors is substantial. If their number 
is infinite / is not injective. 
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