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1. INTRODUCTION 

Isoperimetric problems concern the connection between the curve length and the 
volume of its convex envelope in a certain curve class in an w-dimensional Euclidean 
space En. The result is an isoperimetric inequality — a bound for the volume of the 
convex envelope of the curve depending on its length L, and finding of such curves 
that the volume of their convex envelopes becomes maximum. These problems may 
be solved for both the closed and the open curves. Four isoperimetric problems may 
appear, with regard to the parity of the dimension of the space En : 1. n is even and 
the curve is closed; 2. n is even and the curve is open; 3. n is odd and the curve is 
closed; 4. n is odd and the curve is open. 

The first problem in the class of convex curves was solved by I. J. Schoenberg 
in 1954 in the paper [7]. To prove the inequality L" = V(nn)n/2 n\ (n\2)\ he used 
the method of A. Hurwitz and the Fourier series. 

The second problem in the class of convex curves was solved by A. A. Nudel'man 
in 1975 in the paper [6]. First he solved the isoperimetric problem for the convex 
envelope in the class of convex N-sided polygons of a length L in En, and then by 
passing to the limit for N -> oo he got the inequality L" ^ V. n\ (n — 1)!! . (7c. nj2)n/2. 

The third problem for n = 3 was solved by Z. A. Melzak in his works from 1960 to 
1968 under the following strict restrictions on the curve: Let it be a closed smooth 
curve of the class C1 with two planes, x = 0 and y = 0, as planes of its symmetry. 
Its projections in these planes are open convex curves, and its projection in the plane 
z = 0 is a closed convex curve. If the curve is given parametrically by functions 
x(s), y(s), z(s), then the volume of its convex envelope is maximum if and only if it 
is a periodic solution of the differential equations x" = — xy2, y" — —yx2, z' = xy, 
see [3] and [4]. In his paper [5] published in 1968 he calculated numerically the best 
constant B in the inequality L3 _ B . V He calls it the Baggins constant. 
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The fourth problem in the class of convex curves in En was solved in 1949 by E. 
Egervary in [ l] . He proved the inequality L3 ^ 18 ̂ (3) n . Vby converting the prob
lem to a plane isoperimetric problem. Egervary's result was then generalized by 
M. G. Krein and A. A. Nudel'man in [2]. They proved the inequality E ^ (1/2) V. 
. 7r(w"1)/2 . n\ (n — 1)! nn/2 on the basis of Schoenberg's results and theorems from 
the theory of moments. 

In the present paper an isoperimetric inequality is found for (n + 2)-polygons 
in En9 the convex envelope of which is either a simplex or a pair of simplexes with 
a common wall. 

We shall first investigate the convex envelope of n + 2 points from En. Therefore, 
let A = (Al9..., An+2) be an ordered (n + 2)-tuple of points from En. These points 
must be linearly dependent, therefore there exist real numbers cl9 ..., cn+2 so that 

5 > , = 0, (*i,...,cfl + 2 )* (0 , . . . , 0 ) 

and 

(1) cxAt + ... + cn+2An + 2 = (0, . . . ,0) . 

We can evidently assume that the number of negative coefficients cl9...9cn+2 is 
smaller or equal to the number of positive coefficients. We shall say that the (n + 2)-
tuple A is of the type 0, provided all points Al9 ...9 An+2 are located in a certain 
subspace Ek of the space En9 where k < n. If an (n + 2)-tuple A is not of the type 0, 
n + 1 points from the points Al9..., An+2 are linearly independent and, therefore, the 
coefficients cl9..., cn + 2 are determined, except for a non-zero factor, uniquely. 
Therefore we can define that an (n + 2)-tuple A9 which is not of the type 0, is of the 
type k, provided that exactly k coefficients cl9..., cn+2 are negative. It is easy to 
prove that an (n + 2)-tuple A is of the type 1 or 2 if and only if its convex envelope 
is a simplex or a pair of simplexes with a common wall, respectively. In the space E3 

there clearly exist only (n + 2)-tuples of types 0, 1 and 2. If an (n + 2)-tuple A is of 
the type 2, we shall call the points of A9 which do not lie in the common wall of the 
corresponding pair of simplexes, opposite vertices. Clearly, a given (n + 2)-tuple 
is of the type 2 if and only if it includes such two points that the segment determined 
by them intersects the simplex formed by the remaining points of the (n + 2)-tuple 
(this includes a simplex in a hyperplane of the space En). The two points are then 
opposite vertices of the investigated group of n + 2 points. 

Let us also mention the symbols we shall use. For any points Xl9...,Xm e En the 
symbol XXX2 denotes the distance between the points Xt and X2, the symbol 
£X1X2X3 the angle with X2 at its vertex and sides containing the points Xx and X3, 
the symbol {Xl9 ...,Xm} is used to denote the subspace of the space En9 spanned by 
the points Xl9 ...9Xm9 the symbol [X-, ...,Xm] denotes the closed m-sided polygon 
with the vertices Xl5...,Xm (i.e. a cyclically ordered set of points), the symbol 
L(X1?..., Xm) denotes the length of this m-sided polygon (i.e. the number XXX2 + ... 
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. . . + Xro-iX™ + XwXi), the symbol V(X1,...9Xm) denotes the volume of the 
convex envelope of the m-sided polygon [X j , . . . ,Xw] considered in the space 
{Xt, . . . ,XW}. When denoting X = [Xl5 ...,XW] we shall also write L(X) instead 
ofL(Xl9...,Xm). 

As regards an (n + 2)-sided polygon [Ax, ..., A;i + 2 ] we shall say that it is of the 
type k, provided the unordered (n + 2)-tuple of the points (Al9 ..., A„ + 2) is of the 
type k. 

2. FUNDAMENTAL PROPERTIES OF AN (n + 2)-SIDED POLYGON 
OF THE TYPE 2 IN En 

The following cases may occur for an (n + 2)-sided polygon of the type 2: 

a) the line joining the opposite vertices is its side; 
b) the line joining the opposite vertices is not its side. 

In the cases a) and b) we say that the (n + 2)-sided polygon is of the 1st and 
2nd kinds, respectively. 

Remark. It may occur that for an (n + 2)-sided polygon of the type 2 just two 
coefficients in Eq. (l) are negative and just two positive. Then the (n + 2)-sided 
polygon [Al9 ..., An + 2] can be expressed in two different ways as the union of two 
simplexes. In this case the (n + 2)-sided polygon [Al9..., An + 2] can be viewed as 
an (n + 2)-sided polygon of the 1st as well as the 2nd kind. 

Theorem 1. Let A be an (n + 2)-sided polygon of the 1st kind in En. Then there 
exists an (n + 2)-sided polygon A of the 2nd kind such that 

L(A) = L(A[), V(A)>V(A). 

Proof. Let A = [Al9..., An+2]. We can clearly renumber the vertices of the 
(n + 2)-sided polygon Al9..., An+2 so that the (n + 2)-sided polygon will not change 
and that A1 and A2 will become opposite vertices. The remaining n points, A39... 
..., An+l9 determine a hyperplane En_1 in En. Now let us construct the plane E2 

passing through the points A3 and An+2 and perpendicular to En^v Let the ortho
gonal projections of the vertices Ax and A2 into this plane be points A[ and A2. 
Clearly, the points Ax and A\ have the same distance from the hyperplane En„x for 
i = 1, 2. Therefore, V(Al9 ..., An+2) = V(A'l9 A!l9 A39 ..., An+2). Moreover, 
L(Ai, A2, A39..., An+2) 5j L(Al9..., An+2). Let us denote d = L(A'l9 A29 A39 An+2). 
In the plane E2 we can find points B and C such that the quadrangle [B, C, A3,An+2] 
has the length d and the largest volume of its convex envelope of all the quadrangles 
in the plane E2 which have the side A3An+2 and the length d. Then 

(2) V(A'U A!29 A3, An+2) < V(B9 C, A3i An+2). 
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We shall now prove that 

(3) V(A'l9A'29A39...9An+2)<V(B9C9A39...9An+2). 

We shall denote by Jx a pyramid, the base of which is formed by the convex envelope 
of four points, A\9A'29A39An+29 and whose vertex is the point A4. Now for i = 
= 2,.. . , n — 2, J( represents a pyramid with the base Ji_t and the vertex Ai+3. 
Let vt be the height of the pyramid Jt. Clearly Jn_2 is the convex envelope of the 
(n 4- 2)-tuple (A'l9 A29 A39..., An+2). Since the volume of the pyramid in En with the 
base P and the height v is Pvjn, we conclude 

V(A'l9A'29A39...9An+2) = iV(A'l9 A29 A39 An+2) i\ lv2 -vn„2. 
n 

If we construct a finite sequence of pyramids for the (n + 2)-tuple (B9 C9 A39..., An+2) 
in a similar way, we obtain pyramids JJ, f = 1,..., n + 2. Since the space determined 
by the base of the pyramid Jt coincides with the space determined by the base of the 
pyramid J'i9 the heights of the pyramids J{ and J- are the same. Therefore 

(4) V(B9 C, A39 ...9An+2) = iV(B9 C9A39An+2)v1 iv2 -vn.2. 
n 

Now, the statement (3) to be proved follows from (2). The above constructed points 
A39..., An+l9 B form a simplex in a hyperplane of the space En. The segment CAn+2 

intersects this simplex and therefore, the (n + 2)-sided polygon of the type 2 is clearly 
of the 2nd kind. Theorem 1 is proved. 

3. ISOPERIMETRIC INEQUALITY FOR A PENTAGON IN E3 

We shall first investigate a special case: a pentagon in the three-dimensional 
Euclidean space E3. The isoperimetric inequality for a pentagon in E3 can be proved 
by constructing for each pentagon A in E3 a finite sequence A1 = [Ai,..., Al5], 
i = 1,..., 5, of pentagons in E39 the first term of which is the pentagon A. All the 
pentagons of the sequence have the same length. The volume of the convex envelope 
of each of them, except the first term of the sequence, is larger or equal to the volume 
of the convex envelope of the preceding term of the sequence, and the last term of 
the sequence is the same for all pentagons in the space E3. This last term of the 
sequence will be the required pentagon with the maximum volume of its convex 
envelope. Evidently, it is sufficient to restrict ourselves to pentagons A of the 2nd 
kind (see Theorem 1). 

Therefore, let A = [Al9...,A$] be a pentagon of the 2nd kind in E3. Clearly, 
we can choose the numbering of the vertices so that the vertices A2 and A4 are op
posite. Let us denote L(A) = L0. 
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We shall say that a pentagon of the 2nd kind X = \XX, . . . ,X 5 ] satisfies the con
ditions a), b), c), d) and e), respectively, provided 

a) L(X) = Lo
ta) the vertices X2 and X4 are opposite, 
c) the triangles [X 1 ,X 2 ,X 3 ] and [X3 ,X4 , X5] are isosceles with the bases XtX3 

and X3X5 and their planes are perpendicular to the plane {X1,X3,X5}, 
d) ^X2X1X3 = *X 4 X 5 X 3 , 
ej X1X3 = X5X3. 

Now we shall construct the finite sequence of pentagons mentioned above: 

1) We put A1 = A. 

2) We construct a pentagon A2, satisfying the conditions a), b), c), so that A2 = At 

for i = l , 3 , 5 and L(A2_t, A2, A2
+1) = L(A\_U A\, A\+1) for i = 2, 4. Clearly 

V(A') S V(A2). 

3) We construct a pentagon A3, satisfying the conditions a), b), c), d), so that 
A\ = Affori = 1, 3, 5. Let us denote by vf the height ofthe triangle [Af_l5 Af, Af+1] 
for j = 2, 3, i = 2, 4. Further, let us denote a = (l/2)AjAT3 and b = ( l /2)A3A5 . 
Let us construct the following points, defined by Cartesian coordinates in the auxiliary 
plane E2 : B = [0, 0], B{ = [a, v{\9 B{ = [a + b9 v{ + v{\9 j = 2, 3. We find that 
BB{ + B{B{ = (1/2) (L0 - A~A~5), j = 2, 3. Since ^A\AXA3 = *A\A5A3, the 
points B, B3, B\ lie on a straight line. This implies that v\ + v\ ^ v2 + v2. and, 
therefore, V(A2) = V(^L3). 

4) We construct a pentagon .A4, satisfying the conditions a), b), c), d) and e), 
so that L(A\, A4, A4) = L(Al9 A3, A5) and A4 = A{ for i = 1, 5. Let us denote by v4 

the height of the triangle [-44_i> A4, Af+1\ for i = 2, 3. In the same way as sub 3) we 
can prove that v4 + v% = v\ + v3. Since V(Al9 A39 A5) _\ V(AA

l9 A%, A4), we get 
V(A4) _\ V(A3). 

5) To each number c e R, 0 < c < (1/2) L0, we can now construct the set Pc of 
all pentagons \Xl9 . . . , X 5 ] , satisfying the conditions a), b), c), d), e) and also the 
condition X!X5 = c. From the set Pc it is easy to select a pentagon with the maximum 
volume of its convex envelope. If we put L = L0 — c, we arrive at a pentagon in 
which the distance of the point X3 from the line XiX5 is 

w »-iV (L"-c2)' 
The volume of its convex envelope is 

(6) Fc = c ( L ' 2 - c 2 ) / 3 . 2 * . 

It is easy to prove that the function Vc of the variable c (where L = L0 — c) reaches 
its maximum for c = (1/4) L0. For this value Vc will be equal to L0/(3.27). From (5) 
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we can easily determine the shape of the pentagon whose convex envelope has the 
volume I^l(3.27). This pentagon is the last term A5 of our sequence of pentagons. 

Theorem2. Let A = [Al9..., A5~\ be a pentagon (in E3) with the length L0 and the 
volume of its convex envelope V0. Then 

(7) L3
0-3.27V0 = 0 . 

The equality sing in (7) is true if and only if the pentagon A is of the 2nd kind. 
If we number its vertices so that the vertices A2 and A4 are opposite, then 

1) The pentagon A satisfies the conditions a) to e); 
2 ) A ^ - ( l / 4 ) L 0 ; 
3) the distance of the point A3 from the line AtA5 is equal to (1/4) L0; 
4) the distance of the point A2 or A4 from the line A^3 or A3A5, respectively, is 

equal to L0/8. 

Proof. Theorem 2 follows from Theorem 1 and from the construction of the finite 
sequence of pentagons carried out above. Properties 3) and 4) of the pentagon with 
the maximum volume of its convex envelope can be easily checked by simple cal
culation. 

4. ISOPERIMETRIC INEQUALITY FOR (n + 2)-SIDED POLYGONS 
OF TYPE 2 IN En 

The isoperimetric inequality for (n + 2)-sided polygons of type 2 in E„ can be 
proved in the same way as its special case (the isoperimetric inequality for a pentagon 
in E3) by constructing a finite sequence A1, A2

9... of (n + 2)-sided polygons of the 
2nd type. Let us put A1 = [A[9..., -4* + 2 ] , i = 1, 2 , . . . and let A = [Al9..., An + 2~\ 
be an (n + 2)-sided polygon of the 2nd type in En. According to Theorem 1 we are 
able to restrict ourselves to the case that the (n + 2)-sided polygon A is of the 2nd 
kind. We are clearly able to number the vertices of the (n + 2)-sided polygon A 
so that the vertices A2 and Ak (k > 3) are opposite. 

We first put A1 = A. In the second step we shall construct an (n + 2)-sided polygon 
A2 so that the triangles [A\9 A\9 A\~\ and [Al_l9 A\9 A\+1~\ are replaced by isosceles 
triangles constructed in planes perpendicular to the hyperplane {A\9 .A3,..., A\_l9 

A\+1,..., A\+2}. If k > 4, we denote by Q the plane of symmetry of the pair of points 
A2-2, Al+1. NOW the point symmetric to the point A% or to A2_t with respect to the 
hyperplane Q will be denoted by A\_1 and A\, respectively. The other points remain, 
i.e., for j = 1, . . . , n + 2, k - 1 4= j + k, we put A) = A]. In this way we have 
constructed an (n + 2)-sided polygon A3, for which L(A2) = L(A3) and V(A2) = 
= V(A3)9 and which has A\ and Al_x as its opposite vertices. If we repeat this 
procedure another (k — 5)-times, we arrive at an (n + 2)-sided polygon Ak~~2 
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with the opposite vertices Ak
2
 2 and A\ 2. Now, let us denote by E3 the subspace of 

the space En, containing the points A\~2, Ak
3~

2, Ak
5~

2 and the direction perpendicular 
to the hyperplane {A\~2, A\~2, Ak

5~
2, A\~2,..., A*"2}. Clearly ~A\~\ ..., Akf2~ c 

c E3. As in the proof of Theorem 1 we find that the convex envelope of the (n + 2)-
sided polygon Ak~2 can be constructed by establishing a finite sequence of pyramids 
by adding further vertices to the base which is the convex envelope of the pentagon 
[A\~2,..., Ak

5~
2~. This implies that, if we put A)'1 = A)~2 for i = 1, 5 , . . , n + 2 

and if we construct points A)"1, j = 2, 3, 4, so that the pentagons ~A\~2,..., Ak
5~

2~ 
and [Ai"1, . . , A5"1] are isometrical and the subspaces {A*-1, . . , A*-1} and 
{Ak~\Ak

5-\ ...,-45"£} are perpendicular to each other, then V(Ak_1) = V(Ak"2). 
If we now put V, = V(A\~\ Ak

5~\ ..., A^), V2 = V(A\~\ ..., A','1), V' = 
= V(A\~1,..., A^ll), c = A\~1Ak

5~
1, we find, as the result of constructing the finite 

sequence of pyramids, that 

(8) r = -±±-.±vtv2. 
n(n — 1) c 

If we further put L, = L(A\~\ Ak
5~\ ..., Ak

n~2) - c, L2 = L(A\~\ ..., Akfl) - c, 
then, according to [6], 

( 9 ) V < csl{{L\-c>y->) 
W 1 - ( n - 2 ) ! V ( ( « - 2 ) " - 2 ( n - 3 ) " - 3 ) 

and, with regard to Eq. (6), 

(10) v2 < C^2 ~ °2>> 
4 3 . 2 

We can now obtain an estimate for the volume V from the relations (8), (9), (10). 
Since we know that Lt + L2 = L(Ai_1, . . , -4£~2), by investigating the extremes of 
the function of three variables L1? L2 and c, we obtain the following theorem: 

Theorem 3. Lef A be an (n + 2)-sided polygon in En of the type 1 or 2 with L(A) = 
= L0 and V(A) = V0. Then 

2 2 w" /2«i (n 4- iVn + 1H ' 2 

(11) L% - 2 U n - ^ + 1^ Vo = 0 . 
J yj 3 

Remark. We have proved the inequality (11) for an (n + 2)-sided polygon of the 
type 2 in the way described above. Clearly this inequality is also valid for (n + 2)-
sided polygons of the type 1. By investigating the individual steps of constructing 
the sequence of (n + 2)-sided polygons A1, A2,... one can easily (but not briefly) 
describe the (n + 2)-sided polygons for which the equality sign in relation (11) is true. 
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