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časopis pro pěstování matematiky., roč, 108 (1983), Praha 

INTEGRAL OF MULTIVALUED MAPPINGS AND ITS CONNECTION 
WITH DIFFERENTIAL RELATIONS 

JiRi JARNIK and JAROSLAV KURZWEIL, Praha 

(Received June 22, 1981) 

1. INTRODUCTION 

The notion of integral of a multivalued mapping has been introduced by a number 
of authors. Let us mention R. J. Aumann [ l] (1965) and Z. Artstein, J. A. Burns [2] 
(1975), whose approaches are essentially different. While the former defined the 
integral in terms of measurable selections, the latter used a Riemann-type definition 
following the idea due to J. Kurzweil [3, 4] (1957), [5] (1980), R. Henstock [6] 
(1963) and E. J. MacShane [7] (1969). Let us recall these definitions. 

Let Rn be the n-dimensional Euclidean space, T = [a, b] SL compact interval, 
F : T -» Sfn a multivalued mapping (Sfn denotes the family of all subsets of Rn\ 

Definition 1 (Aumann [1]). Let 

& = {f : T-> Rn |f Lebesgue integrable, f(t) e F(t) for a.e. t e T) . 

The set 

I« = Uf(t)dt\feA<zR" 

is called the sf-integral of F over Tand we write 

i* = = и£ғ(í)dt 

Before giving the other definition, let us recall the requisite notions. 
A partition of T is a collection 

(0) A = {(tj9 [aj-i9 aj])9 j = 1,..., k; a = a0 = at ... S ak = b} , 

a gauge on Tis a positive real-valued function 5 :• T-> R+ = (0, + oo). We say that A 
is subordinate to 5 (briefly: A sub d) if 

•[flj-i. *I3 c (0 - Kh)> h + S(*J)) > J = !> •••'fe • 



The Riemann sum (for F) corresponding to a partition A is constructed as 
k 

S(F, A) = { £ <Pj(aj - aj.,) \ tpj e F(tj), j = 1,..., k} 
I=i 

k 

(we write briefly S(F, A) = J] F(fy) (ay — a/_i), using the usual definition of the sum 
1=1 

and the multiple of sets). 

Definition 2 (Artstein, Burns [2}). Let F(t) be compact for teT.A compact set 
1$ c Rn is the ^-integral of F over Tif for every e > 0 there is a gauge 3 such that 

h(S(F,A),I#)<e 

for every partition A of T subordinate to S (h is the Hausdorff distance of sets). 
We write 

řЛ = И Í Щàt 

Let us briefly mention some properties of the integrals introduced in Definitions 
1, 2. (For detailed accounts, the reader is refered to [1], [2].) 

The .^-integral always exists, nonetheless, it can be empty. On the other hand, the 
J^-integral need not exist but if it does, it is a nonempty set. Both the s/- and S&-
integrals assume convex values; moreover, the identity J r F(t) dt = J r conv F(t) dt 
holds for the ̂ integral, but not generally for the ̂ -integral (conv stands for the closed 
convex hull of a set). Finally, if the ^-integral of F over T exists (which happens if 
and only if F is integrably bounded (see Definition 4) and conv F is measurable), 
then it coincides with the ^-integral of F over T. 

Apparently, the Riemann-type definition has some advantages. On the other hand, 
if for example F(t) = [0,1] for t e T, then of course (J1) $r F(t) dt exists, while the 
(^)-integral of G, G(t) = F(t) u { — XM(0}> where XM -S the characteristic function of 
a nonmeasurable set M c T, does not. This situation seems rather unnatural. 
Therefore, the aim of the present paper is to give a modification of the Riemann-type 
definition, which would avoid such phenomena. 

Our definition will be equivalent to that of the .^-integral provided F is integrably 
bounded, measurable and assumes compact values (measurability can be replaced 
by convexity of the values F(t)). It follows from the above mentioned conditions of 
existence of the ^-integral (cf. Theorems C and D in [2]) that our integral also co
incides with the ^-integral provided the latter exists. 

Further iesults of the present paper can be described ~as follows: for a multi
function F, denote by G(F) the multifunction with the following properties: 

(i) 0(F) (t) is a closed subset of Rn for all t: 
(ii) ©(F) is measurable; 



(iii) 0(F) (t) c cl F(t) for all t (cl denotes the closure); 
(iv) 0(F) is maximal in the following sense: if U is a multifunction satisfying 

(i), (ii), (iii) (with ©(F) replaced by U), then U(t) c 0(F) (t) for a.e. t. 

It is evident that 0(F) is uniquely defined (up to a set of measure zero), provided 
it exists. Moreover, 0(F) exists for every multifunction F (cf. Theorem 4). In Theorem 
5 we prove — our definition of the integral being used on both sides — that 

J 0 (conv F) (t) dt = J F(t) dt 
JT JT 

provided the multifunction F is integrably bounded (here of course (conv F) (t) -= 
= conv F(t) foi t G T). Further, if F is measurable and integrably bounded, then 

(sѓ) Г cl F(t) dř = í F(l) dř 
Jт Jт 

As a consequence, we obtain 

On the other hand, 

(jtf) j <9(conv F) (t) dt = f F(t) dt . 
J r J r 

(.stf) f cl F(t) dt = (j/) f 0 (F) (*) dt 
J r J r 

(F need be neither measurable nor integrably bounded). Obviously 0(F) (t) c. 
c <9(conv F) (r) for a.e. t e Tand the above formulas provide some insight into why 
it can occur that 

(V) f F(t)dt% ľ F(t)dt 
Jт J т 

(even if F(t) is compact for f e T). 
Finally, we prove a theorem which is an analogue of that on the equivalence of the 

differential and the corresponding integral equation. 
The case of multifunctions that are not integrably bounded exhibits certain specific 

features. We intend to pursue its study and piesent more complete results later. 

2. PRELIMINARY 

In this section we will introduce an operator 0 by a definition strongly resembling 
that of the Artstein-Burns integral [2] but not involving the Hasudorff distance. 
Theorem 3 will show that if we restricted ourselves to multifunctions that are in
tegrably bounded and measurable, we could use it as an equivalent definition for 
both the integrals mentioned in Introduction. However, Examples 1 — 3 will demon
strate that in general the definition requires some modification. 
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In addition to the notation introduced in Section 1, we shall use the following sym
bols: d will denote the Euclidean distance of points or sets, e.g. d(x, y), d(x, A), 
d(A, B) = inf {d(x, y) | x e A, y e B}; B(x, 8) and B(x, 8) will be the open and closed 
ball, respectively, with center x and radius 8 (in Rn); similarly Q(A, 8), Q(A, 8) will 
denote the open ^-neighborhood of a set A and its closure, respectively; m stands 
for the Lebesgue measure, m% for the inner measure (the dimension will be clear 
from the context). Xn is the family of all nonempty convex compact subsets of Rn, 
Xn

0 = Xn u {(f)}. As mentioned in Introduction, conv and cl stand for the closed 
convex hull and the closure, respectively. 

Definition 3. Let T = [a, b], F : T-> Sfn. Then we denote by <£(F, T) the set of 
all z e Rn such that for every e > 0 there is a gauge 8 : T -» R+ such that for every 
partition A of T subordinate to 8 we have d(z, S(F, A)) < e. That is, 

(1) <2>(F, T) = {z e Rn | Ve > 0 3 gauge 8 : A sub 8 => d(z, S(F, A)) < e} . 

Remarks . 1. A real-valued function f: T'-* Rn may be viewed as a multivalued 
mapping from T into Sfn. In that case, the functional from Definition 3 equals the 
Lebesgue integral iff it is nonempty (hence obviously one-point); it is empty, iff the 
Lebesgue integral does not exist. (Cf. [5], [6].) 

2. Evidently we can write 

(2) 0(F,T)=f] U n Q(S(F,A),e), 
e>0 6 Asubd 

where A sub 8 indicates that the intersection is taken over all partitions A sub
ordinate to 8. 

Definition 4. We shall say that F : T-> Sfn is integrably bounded if there is an 
integrable function Q : T -> [0, + oo) such that F(t) c B(0, g(t)) for a.e. t e T. 

Theorem 1. Let F : T'-> Sfn be such a map that F(t) is bounded for all te T. 
Then the set #(F, T) is closed and convex; it is compact provided F is integrably 
bounded. 

Proof. The closedness immediately follows from the relation (l); the same relation 
implies that 4>(F, T) is bounded provided F is integrably bounded. The convexity 
easily follows from 

Proposition. If F(t) is bounded for te T, then 

(3) >̂(F, T) = 0 U n conv Q(S(F, A), e) . 
e > 0 d JsubS 

Indeed, let us assume that Proposition is true. The set 

(4) PM= n comQ(S(F,A),e) 
Asubd 

n 



is obviously convex. If x, y e \J P6tt, then there are gauges Sh i = 1, 2, such that 

x e Pdut, y e Pd2tt. Put <53(f) = min (St(t), d2(t)) for t e T. Then x, y e Pd3t, which 
is convex, hence any point kx + (l — X)y, 0 ^ X g 1, belongs to Pd3S c \JP3e. 

b 

This proves that \JPi>e is convex and since the intersection of convex sets is again 
b 

a convex set, we conclude that $(F, T) is convex. 

Proof of Proposition: Remark 2 makes the inclusion c in (3) obvious. To 
prove the converse inclusion, we use a lemma quoted in [2], which is due to Shapley, 
Folkman (cf. [8], Theorem 9, p. 396): 

Lemma. Let L > 0, Aj c Rn, Aj c B(0, L), j = 1,..., k. Then 

k k 

conv £ A j c Q( £ A j , Lyjn) . 
1=i 1=i 

Let 

(5) z e O U PI conv Q(S(F, A), s) 
e>0 c5>0 Asubb 

and n > 0. Then there is a gauge <5 such that z e PM/2 (cf. (4)). Put <50(t) = 
= min (5(t), n[4 y/(n) (1 + c(f))] " *), where c : T -> f?+ is such that F(f) c E(0, c(t)) 
for t e T; then obviously 

(6) " * W -
Let us denote A^ = F(f,) (â  - a,..-) wheie tj9 aj are from A (cf. (0)); then S(F, A) = 

fc 
= J] Aj. If A is subordinate to <50, then Aj c B(0, 2c(tj) S0(tj)), where 2c(f) <50(f) < 

1=i 
< i?y c(t) [y/(n) (1 + c(f))] _1. Using the above lemma with L = injyjn, we obtain 

(7) conv S(F, A) c G(S(F, A), L^n) = Q(S(F, A), in) . 

The elementary inclusion 

conv Q(M, S) C .G(conv M, s) 

(M c Rn,s> 0) yields 

conv Q(S(F, A), in) c G(conv S(F, A), -J-ff) c fl(S(F, A), n) 

in virtue of (7). Hence. 
J V i / a ^ n -l(S(F,A),f;), 

Jsub^o 

which immediately implies z e #(F, T) foi z satisfying (5)- The proof of Theorem 1 
is complete. 
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Theorem 2. Let F : T-» Sfn, let F(t) be bounded for all t e T. Then 

<P(F, T) = <P(conv F, T) . 

Proof. Notice that for AjG R, Aj <z Rn,j = 1, . . . , k, the identity £ ^ conv A,. = 
u y = i 

= conv ( YJ AJAJ) holds. Consequently, if z e #(conv F, T), then for every e > 0 there 
J = -

is a gauge S such that for every partition A subordinate to S, 

z e Q(S(conv F, A), e) = Q(conv 5(F, A), e) . 

Thus the proof of the inclusion z e <P(F, T) is based on the inclusion (7) (with 
rj = e), which again is established via Lemma as in the proof of Proposition. 

Theorem 3. Let F : T-> S?n be measurable, integrably bounded and let F(t) be 
compact and nonempty for t e T. Then 

(8) ( ^ ) f F(t) dt = <£(F, T) . 

Proof. The inclusion c is obvious. Indeed, if z e (s/) J r F(t) At, then z = 
= J r f (0 df, where f is a measurable selection, i.e. f(t) e F(t) for a.e. t e T. Since 
F(t) =j= 0 we can assume that f is defined for all t e T and hence by Remark 1 (and 
by [5]) we conclude that z e <P(f, T) c #(F, T). 

Thus we only have to prove the inclusion z>. 

Let P = {pl9 p2,...} be a countable dense subset of {x e Rn | ||x|| = 1} and let 
(., .) denote the scalar product. Then 

conv F(t) = n {* e Rn \ (Pi, x) = X{t)} , 
i= 1 

where 

k£i) = sup {(pi,x) | xeF(t)}. 

Denote At = JT Xt(t) dt; the integral exists since F (and hence also At) is measurable 
and integrably bounded. We have 

(9) 0(F,T)czCi{xeRn\(pi,x)^Ai}. 
»=i 

Indeed, let y e #(F, T) and suppose on the contrary that there is a positive integer r, 

(10) (IV, y) - Ar = n > 0 . 

Since y e <P(F, T), we find a gauge <50 such that for every partition A subordinate to <50 

the inequality 

d(y, S{F, A)) < ir, 

13 



holds. Hence there is z e S(F, A) such that 

\(Pn y) - (Pr, -01 < to 

(recall that ||Pr||*== 1) ar-d hence 

(11) (Pn y) = Sfa A) + J, . 

On the other hand, using the Riemann-type definition of the Lebesgue integral (cf. 
Remark 1), for the gauge 50 we find a partition A0 subordinate to 50 such that 

(12) Sfa, A0) = Ar + $rj. 

Combining (11) (with A = A0), (12) and (10) we conclude that 

(pr, y) = Ar + ir] = (pr, y) - }r], 

a contradiction since rj > 0. Hence (9) holds. 
On the other hand, let us denote 

-?,= sup $(Pi,x) | xe(sf)( F(t)dt\. 

Then (since F(t) is compact and hence the ^-integral is both compact and convex) 

(sf)( F(t)dt=(\{xeRn\(Pi,x)= !PJ. 
Jr ' = I 

Assume that there exists a positive integer r such that 

(13) Vr<Ar. 

Denote 
Fr(t) = F(t) n {xe Rn\(Pr,x) = Xr(t)} . 

Then Fr(f) is nonempty (since F(t) is nonempty and compact) and measurable and 
hence there exists a measurable selection fr:T-+ Rn, fr(t)e Fr(t), which obviously 
satisfies Jrfr(f) dt e (sf) J r F(t) dt: However, this inclusion implies 

^r = U> ( fr(t) *t\ = J (prJr(t)) & = ( JJ(t) dt = Ar , 

which contradicts the inequality (13). Hence *Pt = At for i = 1, 2, ... . Taking into 
account the inclusion (9), we conclude that 

(j/) f Ғ(f)dí=>Ф(Ғ,Г), 

which completes the proof of the identity (8). 
Theorem 3 together with Remark 1 may tempt us to conjecture (sf) J r F(t) dt = 

= <P(F, T) for any F with compact values; this however is disproved by a simple 

14 



example given by Aumann [ l ] . Modifying it a little we even demonstrate that the 
Aumann integral can be empty while #(F, T) is nonempty. 

Example 1. Let T = [0,1] = Mt u M2, Mf non-measurable disjoint sets both 
with inner measure zero and outer measure one. Set 

ғ ( í) = í{°.2} foг tєMt 
1} for t G M 2 . 

Then evidently (st) J r F(t) dt = 0 but $(F, T) = #(conv F, T) => 
=5 (.*/) jV conv F(t) dt = [0,1]. (Actually, #(F, T) = [0,1] as can be seen from 
Definition 3 or Theorem 5.) 

Even if we put up with the fact that generally (s#) jV F(i) dt 4= #(F, T) there are 
other properties of 0 that would avert us from trying to introduce a new notion of 
integral by setting #(F, T) = \T F(t) dt. 

First of all, we should expect continuity of <P; however, examples show that if 
P -> b_, T = [a, b], then <P(F, [a, 6]) = lim $(F, [a, /?]) need not necessarily hold. 

Example 2. Let M1 ? M2 be the same as in Example 1. Set 

f{ 1} for teMi9 

F(t)=-J{_l} for teM29 

({-1,1} for re (1,2]. 

Then #(F, [0, 0]) = 0 for 0 < fi < 2 but <P(F, [0, 2]) = {0}. Indeed, the latter 
identity follows from the fact that, provided the gauge S is sufficiently fine then, 
whatever the contribution of the terms involving subintervals from [0, 1] may be, 
it can always be "balanced" (up to an arbitrarily prescribed e > 0) by choosing 
properly the elements 1 or —1 from F(t) in the subintervals from [1,2], so that 
0etf>(F,[0,2]). 

On the other hand, this is not possible if instead of [l, 2] there is only a shorter 
interval [l, /?] available. 

The above example also shows that additivity cannot be expected either; we have 

*(F, [0, /?]) + <P(F, [p, 2]) = 0 * *(F, [0, 2]) 

provided the sum of sets in Rn is defined as usual. 
Let us present one more example that demonstrates that similar phenomena as 

in Example 2 can occur even if the Aumann integral is nonempty. 

Example 3. Let M l 5 M2 be the same as above, and define F : [0, 2] -> R2 as 
follows: 

r{( 1,0); (0,1)} for teMi9 

. F(f) = M - l , 0 ) ; ( 0 , l ) } for teM29 

{(-1,0); (1,0)} for * G [ 1 , 2 ] . 

15 



Then 
*(F, [0,0]) = {(0,/?)} for 0 g j 8 g l , 

$(F,[l,/?]) = {(x ,0) |xe[ - /? + l, /? - 1]} for 1 < /J < 2 , 

*(M°. fl) = {(*•*) I * e [ -*- .*+ 2, y + /?-2], j>e[2-/U]} 
for 1 < fi < 2 . 

In particular, 
0(F, [0,1]) + <P(F, [1, 2]) = {(x, 1) | x € [ - 1 , 1]} 

but 
$(F, [0, 2]) = {(x, y)\xe [-y, y], y e [0, 1]} . 

The examples show that the crucial fact is that the "bad" behavior of the multi
function on part of the interval can be compensated by its "good" behavior on the 
rest of it (which is not possible if we consider the two parts separately). This suggests 
the way out, which will be followed in the next section. 

3. THE INTEGRAL OF A MULTIFUNCTION: ALTERNATIVE DEFINITION 

Definition 5. Let T = [a, b~], F : T-> £fn. We define 

í т Dj=í 

the intersection is taken over all finite decompositions D of the interval T: 

D = {<70, al9 . . . , <TOT} , 

m positive integer, a = G0 <
 at < ••• < am = b and the sum of sets in Rn is defined 

in the usual way. 
Further, let A c R be bounded. Then for F : A -> S?n we define 

f ғ ( / ) d í = í FĂ(t)àt, 
J T J T(A) 

where T(A) is a compact interval, A a T(A), and FA : T(A) -> Sfn is defined by 
F^(t) == F(t) for t e A, FA(t) = {0} otherwise. 

Remarks. 3. In what follows, we shall use the letter ^ to specify that the integral 
involved is the Aumami integral; the integral sign without any additional symbol 
will stand for the integral according to the above definition. Notice that 

(ssf) f F(ř)dřc: f F(ř)dř 
Jг Jг 

without any assumptions on F. 
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4. Theorems 1, 2 imply that jT F(t) dt is convex and closed (compact if F is inte-
grably bounded) and, moreover, J r F(t) dt = J r conv F(t) dt. Since F(t) cz cl F(t) <= 
c conv F(t)9 we also have Jr F(t) dt = jT cl F(t) dt. 

Theorem 4. Let F : A -+ £fn (A bounded and measurable). Then 0(F) exists. 

Theorem 4 is due to Rzezuchowski. It appears (in a slightly modified form) as 
Theorem 2 in [9]. 

Sketch of proof of Theorem 4. (For simplicity, let us assume A = T, TSL compact 
interval.) Denote 

Z = {z e Rn\z has rational coordinates} = {zl9 z2,...} . 

Further, let 

Zt(t) = inf {reR\F(t)nB(zi9r)*0} if teT9 z^clF(t)9 

£J[t) = -co if teT, zteclF(t). 

Then there exists such a measurable function ^f. : T-> { — oo} u ^ u {oo} that 

(i) $lt) = ^(t) for a.e. teT; 
(ii) if S\T-+ {-co} u Rv {oo} is measurable and 9(t) = {..(*) for a.e. teT, then 

S(t) = i>.(r) for a.e. ^ T . 

Denote 

VJii) = R'\B(zt,^t)) if ^ ( 0 e » , 
V((0 = fl" if «A/(0 = - oo , 
r;(O = 0 if <A.(0= » . 

r(0 = nvf(0-

Then evidently V(t) cz cl F(t) for a.e. * e T. Let Q : F -> Rn be measurable, <2(f) cz 
c cl F(f) for a.e. t e T. Then Q(f) n J9(z„ ^(f)) = 0 if ^f(f) e R and the measurability 
of Q implies that Q(t) cz Vt(t) for a.e. f e T9 so that Q(f) c V(t) for a.e. teT. "We may 
put (9(F) = V. 

Remarks. 5. Under the conditions of Theorem 4 we have 

(sí) í cl F(t) dř = (яf) ľ (F) (t) dř 

6. Let F : A -> /5̂ n (.4 bounded and measurable) be measurable (i.e. {t | F(t) n 
n F 4= 0} is measurable for every compact subset E c Rn)9 F(t) being bounded 
for t e A. Then the functions £f from the proof of Theorem 4 are measurable, so that 
^t = ii for i = 1, 2, . . . and 0(F) = cl F. Hence cl F is measurable. 

17 



7- Assume that F is measurable and integrably bounded. Then 

(jtf) ľ cl Ғ(0 dř = Ф(Ғ, T) 

(cf. Remarks 6, 4 and Theorem 3). Consequently, if T = [a, b~\, a < c < b, then by 
the properties of the ^-integral we have #(F, [a, c]) + #(F, \c, b]) = #(F, [a, &]), 
which yields 

Í: Ғ(0 dí = Ф(f, T). 
г 

The main aim of this section is to prove the following result: 

Theorem 5. Let A c R be measurable and bounded. Let F : A —> Sfnbe integrably 
bounded. Put M = <9(conv F). Then 

\ M(t)dt= f F(t)dt. 

(Since M is measurable and integrably bounded, we have 

(sf) J M(t)dt = f M(t)dt = <P(MA, T(A).) 

Before proceeding to the proof we shall present several auxiliary results. 

Let F : A -> yn, A measurable and bounded, let F(t) be bounded for te A. In 
what follows we shall make use of the set P introduced in the proof of Theorem 3, 
that is, P = {pi, P2> •••} is a countable dense subset of' {xe Rn | | |x| = 1}. Then 
defining 

colt) = sup {(ph x)\xe F(t)} 

we may write 

conv F(t) =C]{xeRn\ (Pi, x) = cot(t)} . 
*-=i 

Further, for every i let At be such an integrable function defined on A that 

and if juis measurable on .A, //(f) ^ c0;(i>) foi a.e. f e A, then //(f) g Xt(t) for a.e. f e A. 
(Observe that \A Xt(t) dt = j A co^t) dt — see Appendix.) 

We define 

(14) G(0 = n{xeff"|(p.,x)gA((0}. 
i = l 

Lemma 1. G = ©(conv F) (i.e. G(r) = <9(conv F) (t) for a.e. t e A). 

18 



Proof. G is measurable, G(t) cz conv F(t) for teA and therefore G(t) a 
cz © (conv F) (t) for a.e. t e A. On the other hand, put 

vi(0 = sup {(Pi, x)\xe ©(conv F) (t)} ; 

then vf is measurable by the measurability of 0(F) and vt(t) = a)f(r) as ©(conv F) (t) cz 
cz conv F(t) for f e A. Hence vf(r) _ kt(t) for a.e. f e A and 

©(F) (0 cz n {x e Rn | (Pi, x) = v,(t)} cz G(t) 

for a.e. f e A. 

From Lemma 1 and (14) we obtain 

(15) ©(conv F) (0 = f) {x e «" | {Pt> *) = A,(0} 

for a.e. teA. 

Lemma 2. Lef A (= R be measurable and bounded, F : A -* Sfn integrably 
bounded with an integrable majorant Q, that is, Q:A-+R+, §A Q(t) At < co, 
F(t) cz 5(0, Q(t)) for teA. 

Let there exist measurable disjoint sets Al9 A2, a number e > 0 and a convex 
comPact set Q cz Rn such that 

(i) A = At u A2, 

(ii) teA1=>h(M(t),Q)^s 

(M = 0 (conv F) is given by (15)). 

Then 

<P(F, A)CZQ{Qm(Al); sm(At) + | Q(t)dt\ , 

where #(F, A) = <P(FA, T(A)) with FA, T(A) having the same meaning as in Defini
tion 5. 

Pro or. Let us fix a positive integer k, SL positive real n > 0 and y e $(F, A). Then 
it follows from the identity $A cok(t) dt = Ĵ  Ak(t) dt that the set 

(16) C = Ck = {teA | coK(t) = lk(t) + «} 

has inner measure zero: ^ f(C) = 0. 
In what follows, Xs stands for the characteristic function of a set S cz R. For 

brevity, let us write T(A) = T. 

Find a gauge <5 such that for any partition 

A = {(*j> [tj-i> tjD* J = 1> •••> m; a = t0 < tx < ... <tm=b] 

19 



of the interval Tsubordinate to S the following inequalities hold: 

m 

(17) | I . u ( 0 f o - * , - i ) - ~ 4 - , ) | < i . , . = 1,2; 
1=1 

(18) ÎQЬJÌXA^JÌІҺ-Ь-I)- Í Є(t)dí 
' = 1 Jл, 

<Ч, / = 1, 2 ; 

(19) d(>>, S(FA, Л))<ц. 

(Existence of such a gauge <5 is a consequence of the Riemann-type definition of 
integral.) 

Now there is a partition A0 subordinate to S and such that 

(20) ' I < ? f o ) f o - ' j - i ) < * 5 
Lr,eC 

indeed, since ^t(C) = 0 we have \c g(t) dt = 0 and in virtue of Lemma 4 (see Ap
pendix) the sum on the left-hand side of (20) can be made as close to zero as required 
by choosing a suitable partition A0. 

The inequality (19) implies that there is z e S(FA, A0) such that 

\(Pk> y) - (P* -0| < n 

(recall that ||ft|| = 1) and hence 

(21) (ft, y) < (ft, z) + n . 

By definition there are fj e FA(TJ) such that 

m 

(Pk>z) = Z(Pk>fj)(tj- 0-0 • 
1=1 

We divide the sum on the right-hand side into three parts according to whether 
TjG A1\C9Tje Ax nCorTje A2\ (In fact, there is still one moie possibility, namely 
Tj e T\ A) however, in that case FA(TJ) = {0} and the corresponding sum vanishes.) 
We estimate 

I ( p * > / 1 ) ( 0 - 0 - i ) = I Q(h)(h-h-i)<n 
T/e A i n C ijeA i n C 

by (20), 

I (P*fj){h- 0-i) ^ I e(*,)(0 " 0-i) < i + f e(t)dt 
t j e ^ i T J € A 2 J A 2 

by (18). 
It remains to estimate the first sum corresponding to xt e Ay \ C. Denote 

Ik = sup {(pk, x) | x e Q) ; 
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since M(TJ) C= Q(Q, e) for Tje Al9 we have Ak(*j) ?£ qk + e. Then, by definition of 
Al9 C (cf. (16)) we have 

£ (P*. / j ) (0-0- i )= I ^ j ) ( 0 - 0 - i ) + ? ^ ) - S 
Tj€^4l\C T/6..4l\C 

= IufoKfo)(0 - 0-0 + I**-*(*,) | ^ ) | 0, - 0-0 + f-W ^ 
J 1 

= (& + fi)Ez.4,fo)('j - 0-0 + E*c(*MO(o - 0-0 + v-K-4) = 
J i 

^ (qfc + e)™(Ai) + W + e\l + n + n ™(A) = 

= (qk + B)m(At) + ri(\qk + e\ + 1 + «*(i4)) 

by (17), (20). 
Combining the three estimates and (21) we obtain 

(pk, y) = (qk + e)HAi) + i(\qk + e| + 4 + ™(A)) + \ e(0 d*. 
JA 2 

Since r\ > 0 was arbitrary, this yields 

(P*> y) = qk ™(Ai) + e ш(Ai) + Q(г)dt 

Jл2 

Using this inequality we complete the proof of Lemma 2 by way of contradiction. 
Assume d = d(y,m(Al) Q) = em(A1) + $A2Q(t)dt + £ C > 0 (recall that ye 

e <P(F, A)). Since Q is compact and convex, there is x e Q such that \\x — y|| = d 
and at the same time 

(x,p) = s u p { ( z , p ) | z e Q } , 

\\y - x\\ 

Given £ > 0, there is a positive integer r such that ||p — pr\ < £. Consequently, 

rf-B.v-x|-(y-x,-^-)-(y-.x,p)-

= (y, Pr) - (*, P) + (y,P~ Pr) = 

= 6 ^(A-) + g(t) At + |gr - q\ m(Ax) + (y, P - pr) , 
JA2 

where g = sup {(p, x)\xe Q}. As Q is convex compact we can find ^ such that 
the last two summands contribute less than £• This contradicts the assumption on d. 
The proof of Lemma 2 is complete. 
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Lemma 3. Let A c R be a measurable set, M : A -> S?n a measurable mapping 
with convex compact values. Let e > 0. Then there are measurable pairwise dis
joint sets Ax c= W, i = 1, 2, . . . with \JAt = A, and convex compact polyhedrons Qt 

i 

such that the mapping L: A -* £fn defined by 

Ut) = Qi for t e .4,, 
satisfies 

(22) h(M(f), L(0) < e for t e A . 

Proof. Let {rfc} be the set of all points in Rn with rational coordinates. Then the 
sets 

conv{ril5 ..., rik} 

form acountable set of convex compact polyhedrons {Qt | i = 1, 2, . . .}. Denote 

Bi = {teA\h(M(t),Q)<e), 

Af = ^ \ l\)Bk. 
* = i 

It is easy to verify that Ai9 Qt satisfy the assertion of Lemma 3. 
Let us now proceed to the proof of Theorem 4. Let us assume that F is integrably 

bounded with a majorant Q. As M(t) c conv F(t) for a.e. t e A, it follows from Theo
rem 2 that 

(23) f M(t)dt c f F(r)df . 

Thus, the proof reduces to that of the converse inclusion. 
Let the symbols C0i(t), ^(t), M(t) have the meaning introduced above (cf. (14), 

(15)); let Q be an integrable majorant of F (see Lemma 2), let Ai9 Qi9 L be from 
Lemma 3 and let e > 0. 

Choose rj > 0 so that (T = T(A) has the meaning from Definition 5) 

(24) *n(T) < rj m(T) => | Q(t) dt < e ; 

for this r\ let us find a positive integer v such that 

(25) f m(AJ)<rjm(T)r 
J--V+1 

We introduce the notation 

H^ = {t 11 e Ai9 Ms not a point of metrical density of A(} , 
HJ = {t | f e T\ Ai9 t is not a point of metrical density of T \ AJ , 

H = U (Ht u Hf) -
. = 1 
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Evidently 

m(H) = 0 . 

We find a gauge 5 such that for every i 6 {1 , . . . , v} 

(26) t e Ai \ H , t - d(t) = s < t => m(At n [s, f]) ^ (1 - r\) (. - s) , 

(27) tsAi\H9 t < s = t + 5(t) => m(At n \t9 s]) ^ (1 - r\) (s - f) . 

Moreover, c5 is chosen so that for every partition A of T subordinate to <5 

(28) £** ľ Q(t) 
j J - _ - i 

dt < s , 

where the two stars indicate that the sum is taken over ally such that T, G IJ At u H. 
f = v + l 

(This is possible due to the choice of v and r\ — cf. (24), (25).) 
Assume y e \A F(t) dt; taking the points 

a = t0 < tt < ... < tm = b 

belonging to a partition A subordinate to the gauge 8 chosen above, we have by our 
definition of integral 

y = zt + ... + zm, 

Zje^(FA,\tj.,9tj-\). 

Fix j e { l , , . . , m } . Then either there exists i e {1,..., v} such that XjE At\H or 

TjE U A{KJH. 
i = v + l 

In the first case, we have by Lemma 2 

*{FA> [*j-i> *j~]) <= ^ (Qim(Ai n [tj_u *,.]) ; e(tj - tj_t) + f Q(t)dt\ 

where TJt = [tj-u tj\ \ At. By (22) we have 
Qi m(Ai n \tj. l f ry]) cz Q (J M(f) df; £(f, - *,_ t ) ) , 

\J-4in[f,-i ff.] / 

f M(r) d. c= n (P M(.) dr; f e(r) dA . 
J-4.n[fy- i ,0] \ J * y - l JlTy* / 

This implies 

Qim(At n [_-,_lf f ; ] ) c _ l | r Af(I)df; <ty - tj.J + f c(f)dA 

we conclude 

<K^. [o-i. Ol) = n(P M(0<-'; 2e(0 - o-i) + 2 f e(0 A . 
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In the latter case (if Xj e |J At u H) we have 
Í - - V + 1 

*(F„, [>,_„ í.])<= B(O;J" e(í)dí) 

Combining the last two inclusions, we conclude by (26)—(28) 

y = zt + ... + zme 

en([ M(t)dt; 2em(f) + 2 £ * | o(r)dt + £** P o(f)dA , 
\ J T Jfi JTji Jtj-i / 

where ]T* extends over such couples (j, i), i = 1,..., v, j = 1,..., m, that r^e 
v I , . 

eU-4i\H. 
«-=i 

By (26), (27) we have 

and by (24) 

m^Tji) < rj ш(T) 
J.i 

E*ľ e{t) w dř < є 

Making use of (28) we obtain that 

v e S [ | M(t) dt; 2e m(T) + 3e J. 

Since a > 0 was arbitrary, we conclude y e J r M(t) dt. However, M(t) c conv FA(t) = 
= {0} for te T\A so that \TM(t)dt = JAM(/)dr, which completes the proof of 
Theorem 5. 

Remark 8. Using Theorem 5 we can give the following supplement to Remark 7: 
If F : T-+ XI is integrably bounded, then (ja/) J r F(t) dt = ]T F(t) dt. Indeed, for 
a given F we find M from Theorem 4. Since F(t) is convex, we have M(t) a F(t) 
and hence J r F(f) df = J r M(f) d* = (j*) J r M(f) dr c (__/) JT F(t) dt. Since the 
converse inclusion is evident, our assertion is proved. 

4. RELATION BETWEEN A DIFFERENTIAL RELATION AND THE 
CORRESPONDING "INTEGRAL RELATION" 

Our definition of integralof a multivalued "mapping together with Theorem 5 
enables us to generalize the classical result on equivalence of a differential and the 
corresponding integral equation to differential relations. 
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If F : T x ,Rn -> Xn is a multivalued mapping (with nonempty convex compact 
values), then a function x : I -* Rn, I a. subinterval of T, is a solution of 

(29) x e F(t, x) 

if it is absolutely continuous and 

x(t)eF(t, x(t)) for a.e. tel. 

Let us denote the set of all solutions of (29) by Sol F. On the other hand, let us 
denote by Int F the set of all functions x :I -* Rn, I c Tan interval, such that for 
any tel, t + he I, 

ft + h 

(30) x(t + h) - x(t) e F(T, x(x)) dT 

holds. 

Theorem 6. If F : T x Rn -> Jf" is integrably bounded (i.e. if there exists such an 
integrable function Q: T -> [0, + oo) that F(t, x) c= B(0, g(t))for teT,xe Rn), then 

(31) Sol F = Int F . 

Proof, (i) Sol F c Int F. Let x : I <=z T-> Rn, x e Sol F. Then x exists a.e. in I 
and it is a measurable selection in F(., x(.)). Hence 

[t+h 

xi " " 'N 
[t+Һ 

к(t + h) - x(t) = x(т) dт 

for t, t + h e I and, using the Riemann-type definition of the Lebesgue integral of 
a real function (cf. Remark 1) we easily obtain (30). 

(ii) Sol F =) Int F. Let x:I c r-> Rn, xe Int F. Denote by FX:I-+ Xn the 
mapping defined by Fx(t) = F(t, x(t)) for t el. Let Q = ^(F,). 

Obviously, we have x e Int Q. Let us assume x $ Sol Q. Since F and hence also Q 
is integrably hounded, x is absolutely continuous, x(t) exists for a.e. t e / and |x(f j | ^ 
= Q(t), where Q is integrable. Denote again 

and notice that 

M 0 = S U P {(P«. *) I * e 6(0) • 

Ai(a,b)= f Aiíř) dř 

A,{a, b) - sup | ( P i ) z) | z e f Q(t) díl 

(Recall that by Theorem 3 the integral on the right-hand side equals the Aumann 
integral, which implies the identity.) The assumption x $ Sol Q implies that there is 
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a set M c J, m(M) > 0, such that for every teM there is a positive integer j = j(t) 
such that 

(P* *(0) >*/')• 
Consequently, there is a positive integer r such that 

(IV, *(*)) > MO 
on a set of positive measure. Consequently, there exist t0 e I and h > 0 such that 

/•fo + fc f fo + A 

Ov, *(*)) d* > K(t) dt = ylr(*0, t0 + h), 
J *o J '0 

which contradicts the assumption x e Int Q. Hence x e Sol Q and consequently 
x e Sol F, which completes the proof. 

APPENDIX: RIEMANN-TYPE DEFINITION OF LOWER INTEGRAL 

Let us first recall some well-known facts. 

Definition 6. Let co :T-+ R. The numbers 

J co(t)dt = inf i X(t) dt \ X integrable, X(t) = co(t) for teT\ , 

co(t) dt = sup J X(t) dt | X integrable, X(t) g, co(t) for t e T i 

are called the upper and the lower integral of co over T, respectively. 

Remark 9. It is easily seen that for every co : T-> R integrably bounded there 
exist integrable functions X0, X°:T-+ R, X0(t) g ct>(*) ^ X°(t) for t e T, such that 

f co(t) dt = f X°(t) dt, J co(t) dt = f X0(t) dt 

for any interval I c 7̂  the functions A0, A
0 are uniquely determined (up to sets of 

zero measure). 
The following theorem provides an equivalent definition of the lower integral, 

based on Riemann sums. We use the symbol Ŝ f, A) for real-valued functions in the 
sense of Remark 1, viewing fas a set-valued map with one-point values. 

Lemma 4. Let co;T-+R be integrably bounded. Put 

S » {s € R"\ V gauge 8 3 partition A sub 8 : S(co, A) <; s}. 
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Then 
Id. = infS. f/*0' 

Proof. Denote l(co) = $Tco(t)dt. 

(i) l(co) = inf S. Let e > 0 and s e 5 . Let X0 be the function from Remark 9. 
Then there is a gauge 8 such that for every partition A subordinate to <5 the inequality 

S(Лo,A)- ľ X0(t)dt < є 

holds (cf. Remark l). Since seS, we find (for 5 just found) a partition A0 sub 8 
such that , v 

S(co, A0) = s . 

Recalling the properties of ^0, we conclude that 

s = S(co, A0) = 5(>10, A0) = J A0(f) df - e = 7(c0) - e . 

Since both s and e were arbitrary, we complete the proof of the desired inequality 
by a standard argument, 

(ii) I(co) — inf S. Let again X0 be the function from Remark 9 and set 

N={teT\to(t)>X0(t)}. 

Then evidently mt(N) = 0, where ^ is the inner measure of a set. 
Let e > 0, let 8 be a gauge on T. Our aim is now to find a partition Ax subordinate 

to 8 and such that the inequality S(co, At) = I(co) + e holds, which implies l(co) + 
+ e e 5 . Since j T X0(t) dt = I(co), we find a gauge <50 such that 

(32) S(l0, A) = I(co) + ie 

for every partition A subordinate to <50. Put 8x(t) = min (8(t), 80(t)) for * e T. Then 
(32) holds for all partitions A subordinate t o ^ . 

Denote Q = T\N; then me(Q) = ^(T), where ^ c is the outer measure of a set. 
Consider the family of intervals 

(33) {\t-Z,t + (]\teQ,0<Z<6l(t)}. 

This family is a covering of Q in the sense of Vitali, hence there exists a disjoint 
countable subfamily 

{\?j-lj, <rj + Zjl j = l,2,...} 
such that 

HQ ^ U f o - fj. ' ; + ZJD = 0 • 

Let e. > 0. Then there is a finite number of (disjoint) intervals J} = [<rky — £kj, 
% + &,]» j = 1, • •., r, such that 

(34) «•( U J.) = ^.(Q) - e. = *«(T) - e. . 
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Now we construct a partition Ax such that 
(a) all pairs (<jkj9 Jj)9 j = 1,..., r, belong to At: 
(b) A! is subordinate to <5j. 
Since 0 < £j <z dt(oj) (cf. (33), such a partition exists according to [5], Lemma 3.20. 
(Roughly speaking, this lemma asserts that any "sub-partition compatible with 
a gauge <5" can be completed to obtain a partition subordinate to S.) 

Let us estimate the Riemann sum corresponding to the partition At and the func
tion <o. We have 

(35) S(<o9 At) = 5(A0, AJ + S(<o - X09 A,). 

The first right-hand side term is estimated by (32). As concerns the second term, we 
may omit all summands corresponding to the pairs (<rj9 Jj) since <r3> e Q and hence 
(o(<Tj) = A0(o-j). Thus 

r 
(36) S(<o - X09 At) = m(T \ (J Jj) sup (<o(t) - X0(t)) = £ l sup (<o(t) - l0(t)) . 

J = l teT teT 

If sup(c0(r) — X0(t)) = d < +co, we complete the proof by a standard argument 
teT 

putting sx == -Jed"1 and combining (35) with (32), (36), which eventually yields 
I(co) + £ G S with a > 0 arbitrary. 

If sup (a)(f) — Ao(0) = + °°' w e ^ a v e t 0 u s e t^le fact ^ a t °° ^s integrably bounded. 

If the integrable bound is Q9 we find a set M c T such that JM g(f) df is sufficiently 
small while Q(t) _ const for teT\M. Then the second right-hand side term in (35) 
splits into two summands; the one corresponding to the set T\M is dealt with as 
above, while the other is small due to the choice of the set M. 
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