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Časopis pro pěstování matematiky, roč. 103 (1983), Praha 

AN EXTREMAL PROBLEM FOR SOME CLASSES OF ORIENTED GRAPHS 

K. HOWALLA, A. N. DABBOUCY, R. TOUT, Beirut 

(Received November 6, 1981) 

INTRODUCTION AND NOTATION 

Let <8k be the set of oriented graphs (directed graphs with no 2-cycIe) satisfying 
property (Pk): For all couples of points x and y, there exist at most k distinct directed 
paths from x to y. In previous paper the authors gave the values of fk(p) = 
= max {q | G(p, q) e ^k} for k = 1,2 where G(p, q) denotes a graph with p points 
and q arcs. We shall give here the value off3(p) and characterize those graphs in &k 

which have the maximum numberffc(p) of arcs for k = 1, 2, 3. 
Under an oriented graph G(X, U) we shall understand a directed graph without 

loops and 2-cycles, with the set of points X and set of arcs U. If |K| = p, \u\ = q, 
we also write G(p, q). In such a graph, dG(x), for x e X, denotes the sum of the out-
degree and in-degree of x and S(G) = min {dG(x) | x eX}. 

Arcs will be denoted by (u, v) etc., non-directed paths by [u, v, w ...] etc. 
We shall also denote, for a real t, by ] t [ the integer satisfying t ^ ] f [ < t + 1, 

by [t] the integer satisfying t — 1 < [t] ^ t. 

In section 1, we shall say that a graph G(p, q) satisfies the relation (R) if 

q = 2(p-2) + [i(p - 2)2] . 

1. EVALUATION OF f3(p) 

Theorem 1.1. f3(p) = 2(p - 2) + [l(p - 2)2] for p = 6. 

Proof. We shall first establish two lemmas. 

Lemma 1. For every graph G(p, q) e &3 we have 5(G) = ~\%(p + lj[ . 

Proof. If not then there exists a graph G0 e ^ 3 such that S(G0) = ]|(P + 1)[ + 1. 
Therefore, for any two adjacent points x and y of G0, 

dGo(x) + dco(y) ^ 2]i(p + 1)[ + 2 £ p + 3 . 
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Fig. 1. 

Fig. 2. 

This implies the existence of at least three points of X \ {x, y} adjacent simul
taneously to x and y. We shall use tlrs fact to show that all triangles in G0 are 3-cycles 
and obtain a contradiction. Suppose this is not true and let u, v, w be points of 

54 



Fig. 3. 

a triangle formed by the arc (u, v) and the (yet non-oriented) path [u, w, v]. By the 
above observation, there exist two points y and z, different from w, adjacent to or 
from u and v. All the six possible orientations of the edges [u, y], [u, z], [v, y] and 
[v, z] are given in Fig. 1. We shall show that all these graphs are "forbidden" sub
graphs in G0. It suffices to prove that the graphs in Fig. 1-a, 1-d and the graphs 
in Fig. 2-a and 2-b (subgraphs of 1-b, 1-c, 1-e and 1-f) are forbidden subgiaphs in G0. 

Let us consider the graph in Fig. 1-a. It is easy to see that z can be adjacent, to or 
from, neither w nor y by property (P3). Thus there is a point s different from u, y and w 
which is adjacent to or from both v and z. All the four possible orientations of the 
edges [v, s] and [z, s] create four or more distinct paths from a point in G0 to another 
point (see Fig. 3 where X marks the starting point of four or more distinct paths to 
the point marked O). 

For the subgraph shown in Fig. 1-d, we see that y and z cannot be adjacent by (P3) 
and since dGo(y) + dGo(z) ^ p + 3, there are at least five points in X \ {y, z] which 
are simultaneously adjacent to or from both y and z. Thus there is a point s different 
from u, v, w which is adjacent to or fiom both y and z. However, all the four possible 
orientations of the edges [y, s] and [z, s] lead to four or moie distinct paths from 
a point to another (see Fig. 4 where again X marks the starting point of four or more 
paths to the point marked O). 
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Fig. 4. 

Now for each of the subgraphs given in Fig. 2-a and Fig. 2-b there is at least one 
point s different from h and i, adjacent to or from g and j . The only possible orienta
tions of the edges [#, s] and [I, s] are from j to s and from s to g (see Fig. 5). It is 
easily seen that s can be adjacent neither to or from h nor to or from L Thus there 
exists at least one point r different from g, h and i which is simultaneously adjacent 
to or from j and s. All the foui possible orientations of [y, r] and [s, r] lead, however, 
to four or more distinct paths in G0 (see Fig. 6 which corresponds to Fig. 5-a; a similar 
set of figures may be given for Fig. 5-b). 
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Fig. 6. 

It follows that every triangle in G0 is a 3-cycle. Hence to any arc (w, v) of G0 e &3 

there correspond three distinct paths of length two from v to u in G0, say [v, w, u], 
[v, y, u] and [0, z, «] (see Fig. 7). However, since z cannot be adjacent to or from y 
or w by (P3), there exist at least two points r and 5 different from u and adjacent 
simultaneously to or from v and z. The induced orientation on the new edges leads 
then to more than three paths from z to w, in contradiction to (P3). The lemma is 
proved. 
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Lemma 2. Let a graph G(p, q) have a point x such that dG(x) = ]i(p + 1)[. 
Then G(p, q) satisfies the relation (R) ifG' = G\{x} (obtainedfrom G by omitting 
the point x and the arcs incident with x) satisfies the relation (R). 

Proof. Let the relation (R) for G' be fulfilled: 

q - dG(x) = 2(p - 3) + [i(p - 3)2] . 
Then 

<Z = MP + 1)[ + 2(P - 3) + [J(p - 3)2] . 

However, by inspecting the four cases mod 4 it follows easily that 

]i(p + 1)[ + 2(P - 3) + [i(p - 3)2] = 2(p - 2) + [i(p - 2f\ 

so that G(p, q) satisfies (R). 
To finish the proof of theorem 1.1, we shall show by induction that all graphs in ^ 3 

satisfy the relation (R). 
Let us show first that any graph G(6, q) e &3 satisfies (R), i.e. q = 12. Suppose 

there is a graph G0(6, q) e &3 such that q ^ 13. By lemma 1, there exists a point x 
in G0 such that'<5(G0) = dGo(x) = 4. Let G0(5, q') = G0(6, q)\ {x}. Since G0 e 03, 
there exists in G0 a point j such that dGo'(y) = 5(G'0) ^ 3 . Let again G0(4, q") = 
= G0(5, q')\{y}. One obtains then the following inequalities: 

6 = q" = a' - dG(/(y) = q' - 3 = (q - dGo(x)) - 3 = 

= a-4-3 = 1 3 - 7 = 6. 

Thus f̂" = 6, dGo'(y) = O"(G0) = 3, dGo(x) = o*(G0) = 4 and g = 13. Now since 
dGo (j

1) = 3 and dGo(y) = 4, it follows that y is joined by an arc to (or from) x in G0 

and dGo(y) = dGo(x) = 4. We shall prove that no graph G(6,13) obtained from 
G"(4, 6) by adding two points x and >> joined by an arc and such that dG(x) = dG(y) = 
= 4 can belong to ^3 . There are three graphs G'[(A, 6) in 03 , i = 1, 2, 3 (see Fig. 8). 

Each contains a point dt from which there are three distinct paths to another point at 

in G], i = 1, 2, 3. Since <5(G) = 4, this implies that dt is adjacent to (or from) x or y 
in G(6,13). It is, however, easy to see that the graph G(6,13) cannot belong to ^3 , 
a contradiction. Thus G(6, q) e <$$ always satisfies the inequality q g 12, i.e. the rela
tion (R). 
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Now we are able to finish the proof of theorem 1.1. We have shown that all 
G(p, q) from ^ 3 satisfy (R) for p = 6. Let G(n, q) e ^ 3 for n > 6 and assume this 
assertion is true for all graphs G(p, q)e^3 for which p = n — 1. By lemma 1, 
there is a point x in G such that dG(x) ^ ]i(p + l)[. 

Since G' = G \ {x} is in ^3 , it satisfies (R) by the induction hypothesis. Therefore, 
G satisfies (R) by lemma 2. Hence 

h(p) = 2(p - 2) + [i(p - 2)2] . 
However, the complete tripartite graph (A, B, C, U) with orientation from A to £, 

from A to C and from C to J5 where \A\ = ]i(p - 2)[, |J5| = [i(p - 2)] and |C| = 2 
clearly belongs to <&3 and 

|U| = <? = 2(p - 2) + [l(p - 2)2] . 
Therefore, 

UP) - 2(p - 2) + [i(p - 2)2] . 

2. CHARACTERIZATIONS OF EXTREMAL GRAPHS 

In [1], we have found that foi P _ 4, 

UP) = [ip2], 
f2(j>) = B(P - i)] + [iP2]; 

the result of the previous section was that 

MP) = 2(p - 2) + [i(p - 2)2] for p = 6 
W h e i e A(p) = m a x { a | G ( P ) g ) e ^ } , fc = 1, 2, 3 . 

In this section, we shall give characterizations of all graphs G(p,fk(p)) in <&k, 
k = 1, 2, 3. 

Theorem 2.1. Every graph G(p,ft(p)) in <&u p — 5, is a complete bipartite graph 
(A, B, U) with arcs oriented from A to B where either \A\ = ]^p[ and \B\ = [ip], 
or \A\ = [ip] and \B\ = ]ip[. These two cases are distinct iff p is odd. 

Proof. We shall first establish three lemmas. For brevity, we call <&™ the set of all 
graphs G(p,/!(p)),p = 5. 

Lemma 3. No graph G e&™ with p — 5 points contains any cycle. 

Proof. Let G0(p, /i(p)) e ^ i contain a cycle Cn of length n ^ 3. Contracting Cn 

to a single point, we obtain a graph G(p — n + 1, /i(p) — n) which again belongs 
to 9lm Hence 

(1) [ip2] - n = [i(p - n + l)2] , 

a contradiction since (1) is not true for p = 5 and n = 3. 
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Fig. 9. 

Remark. It is easy to see that for p = 4, the only graphs in 0™ which contain 
cycles are those in Fig. 9. 

Lemma 4. // G(p,fl(p))e&up = 5 then 5(G) = [±p]. 

Proof. Since for any point x of G the graph Gf = G\ {x} belongs to <3U we have 

[ip2] - dG(x) = [i(p - l)2] . 
Hence 

(2) 

so that 

do(x) = [ІP2] - [KP " l) 2] = [ІP] 

S(G) = [ip] . 

Lemma 5. No graph in &™ with p — 5 points contains a directed path of length 
greater than one. 

Proof. Let G0(p,f1(p)) belonging to &™ contain a directed path Lm of length 
m — 2. Any point in G0 which does not belong to Lw is joined by an arc with at most 
one point of L^ by (P-J and lemma 3. 

Fig. 10. 

From this and (2), we obtain the double inequality 

(3) (m + 1) [}p] £ £ d(xt) = p - m - 1 + 2(m - 1) + 2 , 
i = l 

Hence 

(4) 
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A simple calculation shows that (4) is not true for p > 5 and m ^ 2. For p = 5, (4) 
implies m g 2. Since m ̂  2, we have to consider only the case p = 5 and m = 2. 
The inequality (3) yields then the equality 

3[!] = 6 = £<*(*,) = 6 
i = l 

which implies d(xt) = 2, i = 1, 2, 3. The corresponding graph is that in Fig. 10 which 
is a contradiction since q = 5 < fi(5) = 6. 

Let us finish now the proof of theorem 2.1. Let G e <&™; By lemma 5, G contains 
no directed path of length greater than one. It follows easily that G is a bipartite 
graph (A, B, U) with arcs oriented, say, from A to B. If |A | = t then |B| = p - t 
so that 

q = [lp2]^t(P-t). 

This implies easily that t = ~\iP[ or t =•• [£p]. The proof is complete. 

Theorem 2.2. Every graph G(p,f2(p)) in <&2 with p ^ 6 is a complete tripartite 
graph (A, B, C, U) with arcs oriented from A to B, from A to C and from C to B 
where either \A\ = ]i(p - l)[, \c\ = 1 and \B\ = [\(p - l)], or \A\ = [\(p - 1)], 
\C\ = 1 and \B\ = ]^(p — 1)[. These two cases are distinct iff p is even. 

Proof. We shall prove first two lemmas. 

Lemma 6. For any graph G(p,f2(p)) in &2, p^z5,we have S(G) =-- ~\\p[ and if y 
is a point in G for which fG(y) = ~\ip[ then the graph Gf = G\ {y} is in <3~\ as well. 

Proof. If x is any point of a graph Ge&2, G' = G\ {x} belongs to 02 so that 

fi(p)-dG(x)Sf2(p- 1). 
This implies 

dG(x) = p - 1 + \k(p - l)2] - (p - 2) - \\(p - f] = ]ip[. 
Hence 

KG) = ] M • 
However, in [1] we have proved that 

<5(<?)^M-
Thus 

S(G) = ]ip[-

On the other hand, let a point y of G(p,fi(p)) e <32 satisfy dG(y) = ]ip[; the above 
calculation shows that 

fi(v)-dG(y)-h(p-i), 

i.e. that G' = G \ {y} e 9J. 
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Lemma 7. y™ contains only two graphs of order p = 6. Both are complete tripartite 
graphs (A, B, C, U) with arcs oriented from A to B, from A to C and from C to B. 
For one of them, \A\ = 3, | s | = 2, \c\ = l,for the other \A\ = 2, \B\ = 3, \c\ = 1. 

Proof. We fiave f2(6) = 11. Let thus G(6,11) e &%. By lemma 6, d(G) = 3 and 
if a point x of G satisfies dG(x) = 3 then the graph G'(5, 8) = G(6, 11) \ {x} is in <jf$ 
and 5(G') = 3. The only possible distribution of degrees of vertices in G'(5, 8) is 

(4, 3, 3, 3, 3) and that of G(6, 11) is (4, 4, 4, 4, 3, 3). It follows easily that then G 
with deleted orientation is the graph in Fig. 11. Denote by G0(6, 11) and G0(5, 8) = 
= G0 \ {x} these non-oriented graphs. We shall investigate the possible orientations 
of the arcs of G0 and deduce then those of G0. Without difficulty one finds that the 
only possible orientations of G0 are those two in Fig. 12 (any other orientation gives 

Fig. 12. 

more than two directed paths from one point to another). While the graph (a) does 
not create any possible graph G0, the graph (b) leads to the two described in the 
lemma. 

To complete the proof of theorem 2.2, we shall use induction with respect to p. 
For p = 6, the theorem is true by lemma 7. Suppose that p ^ 6 and that the theorem 
is true for all graphs in 0J of order p. Let G(p + 1, f2(p + 1)) e g™. By lemma 6, 
there is a point x of G with the minimum degree ]i(P + 1)[. The graph G' = G \ {x} 
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has order p and since it belongs to &™ by lemma 6, it is a complete bipartite graph 
[Al9 Bl9 Cl9 U±) oriented from A1 to Bl9 from A1 to C1 and from Ct to Bl9 with either 

W = ] K P - I ) [ . N = [KP - i)]> Ici| = 1 (casel) or 

kl = [KP-l)]. kl=]KP"l)[ a n d N - l (case 2). 

Let us notice first that there cannot be any arc to x from a point of Ax: since there 
must be at least one more arc to or from x from or to Cx or Bl9 one gets four cases 

x C, 

Fig. 13a. 
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in Fig. 13-a. Each of them leads to a contradiction. Similarly, there cannot be any 
are to x from a point in B1 by Fig. 13-b and 13-a. There is also no pair of arcs from Ax 

to x and from x to Bt (Fig. 14), no pair of arcs from At to x and from x to C1 (Fig. 
15(a)) as well as no pair of arcs from Cx to x and from x to Bx (Fig. 15(b)). 

Fig. 14. 

(a) ib) 

Fig. 15. 

It follows that either there are arcs to x from all the points in At u Ct in case 2, 
or there are arcs from x to all points in Ct u Bt in case 1. In each case, one obtains 
that G is a tripartite graph of order p + 1 which satisfies the conditions in the 
theorem. The rest is obvious. 

Theorem 2.3. Every graph G(p,f3(p)) in y™ with p = 1 is a complete tripartite 
graph (A, B, C, U) with arcs oriented from A to B,from A to C and from C to B, 
where either \A\ = ]1(P - 2)[, |B | = [i(p - 2)], |C| = 2, or \A\ = [i(P - 2)], 
\B\ = ~\i(p — 2)[, |C| = 2. Both cases coincide iff p is even. 

Proof. We shall first prove a lemma. 

Lemma 8. For any graph G(p,f3(p)) in <g3, p = 1, we have S(G) = ] i (p + 1)[. 
If y is a point of G sUch that dG(y) = ~\i(p + 1)[ then the graph G' = G\ {y} 
belongs again to &3: 

Proof. If x is any point of a graph G e &3 with p ^ 3 points, then G' = G\ {x} 
is in ^ 3 . Hence 

Mp)-dG(x)£f3(p-l) 
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which implies 

Thus 

By lemma 1, 

so that 

d0(x) = Ш ~ MP " 1) = ]І(P + -)[ • 

г(G)ž]ł(p+l)[ . 

Й(G) = ]ł(p + i)[ 

Í(G) = ]KP + I)[-

If a point y in G satisfies dG(>>) = ]i(p + 1)[, the above calculation shows that 

f3(p)-dG(y)=f3(p-l), 

i.e. that G' = G \ {>>} belongs to #£. 

Returning to the pi oof of theorem 2.3, we shall investigate graphs in <&3 with six 
points. Let G(6,12) be such a graph. By lemma 1, 3(G) ^ 4. Let x be a point from 
G(6, 12) for which dG(x) = 6(G) and let G'(5, q') = G(6, 12) \ {x} . Since G'(5, q')e 
E <&3, S(G') ^ 3 by lemma 1. Let ^ b e a point from G'(5, q') of the smallest degree, 
i.e. dG(y) = 8(G'). If G"(4, q") = G' \ {y} then 

6 = q" = q' - <5(G') = (a - 5(G)) - S(G') = 12 - (5(G) - 5(G') 

so that 
5(G) + S(G') = 6 . 

But 
ÍЗ(G) + ð(G') š 4 + 3 = 7 

We have thus two cases: 

Case A. 3(G) = 4 and <5(G') = 3. 

Fig. 16. 

Then the only point y in G' which is not joined with x by an arc (of any orientation) 
has degree four. The distribution of the degrees in G' is thus (4, 3, 3, 3, 3), that in G 
is (4, 4, 4, 4, 4, 4). The graph G with omitted orientation is given in Fig 16. It is not 
difficult to see that the subgraph G' of G cannot contain three directed paths from 
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a point of degree three to another point of degree three. Therefore, the only graphs 
which can serve as G' are those in Fig. 17. Here, the graph in Fig. 17(c) cannot be 
completed into G in 0 3 while the remaining two can be completed in a single way, 
both resulting in the graph Gt(6, 12), the complete tripartite graph (A, B, C, U) 
with arcs oriented from A to B, from A to C and from C to B, \A\ = |B| = \c\ = 2. 

Case B. S(G) = 5(G') = 3. 

The distribution of the degrees in G'(5,9) will then be (4, 4, 4, 3, 3) and G' has as its 
subgraphs one of the graphs in Fig. 8. Let us denote in each of them (Fig. 18) one 
or more points as dt (departure) and one or more points as at (arrival) in such a way 
that there are exactly three directed paths from each d{ to each ay Thus, for i = 

Fig. 18. 

= 1, 2, 3, G'l = G'(5, 9) \ {y} where y is a point joined with three points of G'(. 
Observe that if y is adjacent to or from a point dk then the only possibility is that y 
is adjacent from two points diffeient from the a/s. Similarly, if y is adjacent to or 
from a point ak then the only possibility is that y is adjacent to two points different 
from the d/s. It is easily seen that no graph G'(5, 9) contains the graph G'[ as subgraph 
and that only the graphs G2, G3 in Fig. 19 contain G"2, G3, respectively. (Observe 
that G"2, G3 as well as G2, G3 arise from each other by change of orientation of arcs.) 
An analogue reasoning allows to construct the graphs G(6,12) using the graphs 

66 



G[.(5, 9) and one obtains the two graphs in Fig. 20. (Observe that the point y is a point 
of type aj in G2 and a point of type di in G3.) 

Let us turn now to graphs in ^3 with seven points and prove the theorem holds 
in this case. Let G0(7,16) be a graph in ^3. By lemma 8, S(G0) = 4 and if for a point 
x0, dGo(x0) = 4 then G(6,12) = G0(7,16) \ {x0} is in ^3. One can thus use the 

% 0; 
Fig. 19. 

Fig. 20. 

Fig. 21. 

described technique again. We obtain the graphs in Fig. 21 from the graph Gx(6, 12). 
These are both complete tripartite as asserted. (The graphs G2(6,12) and G3(6,12) 
do not yield any graph G0(7,16) since dGo(x0) = 4 on one side and on the other side x0 

cannot be adjacent to or from both a point d( and aj.) 

67 



We shall now complete the proof by induction with respect to p. We proved the 
theorem is true for p = 7. Thus assume a graph G(p + 1, f3(p + 1)) belongs to 0 3 

while the theorem is true for the graphs in ^ 3 with p ^ 7 points. By lemma 8, there 
is a point x in G which has the minimum degree ]^(P + 2)[. Moreover, the graph 
G' = G\ {x} also belongs to ^ 3 by the same lemma. By the induction hypothesis, 
G' is a complete tripartite graph (Ai9 Bl9 Ci9 Ut) oriented from A1 to Bl9 from Ax to 
Cx and from Cx to j.^ and such that \AX\ = ]i(p - 2)[, ^ J = [i(p - 2)], IC-J = 2 
(case 1), or, if p is odd, \At\ = [i(P - 2)], \B±\ = ]i(p - 2[, |c|- = 2 (case 2). 

Fig. 22. 

68 



Notice that there cannot be an arc from x to a point in At (Fig. 22) since there is 
always another arc incident with x with the other end-point in Cx or Bv Similarly, 
there cannot be an arc from a point in Bt to x (Fig. 23 and Fig. 22d). There is also 
no pair of arcs from a point in Ax u Cx to x and from x to a point in Bx (Fig. 24, 25) 
and similarly, no pair of arcs from At to x and from x to Bx u C t (Fig. 24, 26). 

Fig. 24. 

Fig. 25. 

Fig. 26. 

Therefore, x is either adjacent from all the points of Ax u Cx in case 1 if p is even 
and in case 2, or x is adjacent to all the points of Br u Cx in case 1. In other cases, 
the degree of x would not be minimal. The graph G is then again a tripartite graph 
with the properties described in the theorem. The proof is complete. 
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