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Časopis pro pěstovinf matemгtiky, гoř. 108 (1983), Prmha 

RADII OF STARLIKENESS AND COEFFICIENT ESTIMATES 
OF A CLASS OF ANALYTIC FUNCTIONS 

O. P. AHUM, Khartoum 

(Received August 3, 1982) 

1. INTRODUCTION 

Let S* denote the class of functions f(z) analytic in the open unit disc E{z : \z\ < 
< 1}, normalized so thatf(O) = 0 =f ,(0) - 1 and univalently starlike in E. The 
properties of the elements of this class have been investigated extensively for many 
years. One of the more important early discoveries for the class S* was that f(z) 
satisfies the inequality 

|V(2/f(z))-l |>l, (ze£). 

This fact may also be expressed in the form 

R e V ( / ( ^ ) - ^ 7 - V j > 1 / 2 ' ( Z G £ ) ' 1 4- \z\ 

Then f(z)/z <| (1 + z)~2 in E (where < denotes subordination) and there exists an 
analytic function co(z), \co(z)\ g \z\ < 1, such that 

( L 1 > M-nJ(W (ze£)< 

z (1+ o)(z)f 
Proofs of this attractive result are due to Marx [4], Strohhacher [8], and to Robertson 
[6]. Motivated by this discovery, we introduce the class S(a, j8) as follows. 

00 

A function f(z) = z + £ anzn analytic in the unit disc E is in the class S(a, /?) if it 
« = 2 

satisfies the condition 

where a and ft are arbitrary fixed numbers, O g a < l , 0 < / ? ^ l . 
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It follows from the definition of subordination that /e S(a, j?) has a representation 
of the form 
0 3) / ( z ) _ n + ( 2 « / ? - i ) « , ( z ) T - (zeE) 

for some function co, analytic in E, and satisfying the conditions co(0) = 0 and 
\co(z)\ < 1, zeE. 

A function / e S(a, /?) may not be univalently starlike in E as is easily seen from 
the example f(z) = z(l + z2)~2 e S(l/2,1). 

The class S(l/2, 1) has been investigated by Dvorak [2], Duren and Schober [1], 
and Reade and Umezawa [5]. We, further, note that the class S(1J(2Q), 1) = 
== S(1J(2Q)), Q > 1/2, is larger than the class introduced and studied by Goel [3]. 

In this paper, we obtain the radii of starlikeness and coefficient estimates for the 
functions in the class S(ot, ft). 

2. RADII OF STARLIKENESS 

Let B denote the class of analytic functions co in E which satisfy the conditions 
(i) co(0) = 0, and (ii) |c0(z)| < 1 for z in E. 

Theorem 1. Letfe S(ot, P) and let r0 be the smallest positive root of the equation 

(2.1) (2/J - 1) (2a0 - 1) r4 - 2(2j8 - 1) (2ajS - 1) r3 -

- 2(p + ap + 2aj82 - 1) r2 - 2r + 1 = 0 . 
Then 

(i) for 0 f_ r < r 0 , / is starlike in \z\ < r_, where rl is the smallest positive root 
of the equation 

(2.2) (20 - 1) (2aj? - 1) r2 + 2(3aj3 - fi - 1) r + 1 = 0 , 

(ii) for r0 ^ r < 1 , / is starlike in \z\ < r2, where r2 is the smallest positive root 
of the equation 

(2.3) (I6a0 - 9 - a) r4 - 2(8aj? + 3 - 3a) r2 + (9a - 1) = 0 . 

The bounds for \z\ in (i) and (ii) are sharp. 

Proof. If f(z) = z + a2z
2 + ... and 

(,4) «)-{W-
then p(z) is analytic in E and p(0) = 1. Thus (1.3) may be rewritten as 

(2.5) K g ) , 1 + (2c* - l)qfr) 
. l + ( 2 / ? - l ) o > ( z ) ' 
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where coe B. Taking logarithmic derivatives of (2.5), we find that 

(2.6) Re P&\ = -20(1 - a) Re I -L_— 1 . 
1 } I K - ) J l( l + ( 2 0 - l M z ) ) ( l + (2a0-l)a>(z))J 
From (2.4) we may write 

*{^-'^-r» 
Combining (2.6) and (2.7), we get 

(2.8) R e f c _ _ l = 1 - 4 0(1 - a) _ ° — . 
V ', l / ( - ) J V ,(\ + (2p-\)co(z))(\ + (2oif}-\)o>(z)) 

It is well known [7] that if coe B, then for all zeE, 

(2.9) \zcoiz)-co(z)\^Z\2-\<f. 
1 - \z\ 

Equation (2.8) yields in conjunction with (2.9), 

2(0 + cc0 - 1) r2\(2H - 1) p(z) - (2«0 - \)\2 - |1 - p(z)l2 

0 ( 1 - a ) 0 ( l - « ) ( l - r * ) | p ( z ) | 

where r = [z|, z e £. 
Noting that the transformation (2.5) maps the disc \co(z)\ :g r onto the disc 

\co(z) — a\ < d, where 

l - . ( 2 / , - - l ) (2a /? - - l ) r 2 _ 20(1 - a) r 
1 - (20 - l)2 r2 ' 1 - (20 - l)2 r2 ' 

we set p(z) = a + u + it; and R = \p(z)\ in (2.10). Taking M(u, v) as the expression 
on the right hand side of (2.10), we get 

(2.11) M(u, v) = — - i — \{2-fi- 3a0) + (20 - 1) (a + „) + 
0(1 - a) L 

(2a/? - 1) (a + u) (1 - (20 - l)2 r2) (d2 - u2 - v2)l 
R2 \-r2 R J" 

By differentiating (2.11) partially with respect to v, we obtain 

3M(u, v) vR-*N(u,v) 
dv ~ 0(1 - a) ' 
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where 

N ( M - 2(1 - 240 (« + «) + ft-(^-^^)(f--a-^ + 
1 — r2 

2(1 - ( 2 j g - l)2r2)fl3 

+ 1 - r 2 

It is easily seen that N(u, v) > 0, and so the minimum of M(u, v) on every chord 
u == constant is attained on the diameter v = 0. Taking v = 0 in (2.11), we get 

L < l O - M ( * , 0 ) - 2 - ' - y + 0(1 - a ) / ? ( l - a ) ( l - r 2 ) 

. {0(1 - (20 - 1) r2) K + a0(l - (2a0 - 1) r2) R~l - a(l - (20 - l)2 r2)} , 

where a — d^R^a + d. Now it is easy to see that the absolute minimum of L(R) 
in (0, oo) is attained at 

(2.12) 

and equals 

(2.13) 

where 

( 2 0 - l ) r 2 

]У Ro ш t«(l - (2«0 - 1) r2)У'2 

2џ(r, a, 0) 
ЦRo) = 1 + ,2\ ' ( l - a ) ( l - r 2 ) 

џ(r, a, 0) = 2(a(l - (20 - 1) r2) (1 - (2aØ - 1) r2))1'2 -

- (1 + a) + (4aØ - a - 1) r2 . 

We note that R0 < a -f d. However, R0 may not always be greater than a — d. 
Hence, when R0 e (0, a - d], the minimum of L(R) is attained at 

(2.14) 

and is equal to 

(2.15) £(*.) = 1 

l + ( 2 0 - l ) r 

40(1 -a)r 

( l + ( 2 0 - l ) r ) ( l + ( 2 a Ø - l ) r ) 

The two minima given by (2.13) and (2.15) coincide for such values of a, P (0 ^ a < 1, 
0 < P ^ 1) for which R0 = itl5 which implies (2.1). We thus conclude that 

(2.16) ReïЛàz{ 
f(z) "< 

l + . W'"-** „, Rot*. 
( l - « ) ( l - г 2 ) 

1 -
40(1 -a)r 

(í + (2ß-í)r)(í+(2aß-l)r) 
, R o - Ä i 
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Therefore me function / is starlike if 

(2.17) 2^(r, a, p) + (1 - a) (1 - r2) > 0 , R0 = R, , 

(2.18) (1 + (2j8 - 1) r) (1 + (2ajS - 1) r) - 4)3(1 - a) r > 0, R0 £ Rt . 

Now it is easy to see that (2.18) and (2.17) are satisfied, respectively, for \z\ < rt 

and \z\ < r2, where rl and r2 are the smallest positive roots of the equations (2.2) 
and (2.3). This completes the proof of the theorem. 

The functions given by 

f l + ( 2 a / ? - l ) z P 
/ l ( z ) - Z l l + ( 2 0 - l ) 2 l ' 

2^ f ( \ _ fl - 2a/?fcz + (2a/? - 1) z2} 
M Z j - Z \ l - 2 / . i > - + ( 2 / í - l ) z 2 V 

where b is determined by the relation 

1 - 2aj8br + (2aft - 1) r2
 = = fa(l - (2ajS - 1) r2)l1/2 

1 - 2j?br + (2/f - 1) r2 ° j 1 - (2jS - 1) r2 j ' 

show, respectively, that the bounds in \z\ for (i) and (ii) are sharp for all admissible 
values of a, p (0 ^ a < 1, 0 < P g 1). 

The following Corollary arises from Theorem 1 by an easy computation. 

00 

Corollary. Let f(z) = z + £ a „ z \ analytic in E, satisfy the inequality 
и = 2 

ReV(/(z)/z)>-i ( c >l/2) 
2Q 

for all z in E. Let Q0 > 1/2 denote the smallest positive root of the equation 

32Q3 - 104<?2 + 98g - 27 = 0. 

Then 

(i) for 1/2 < Q ^ Q0, / is starlike in 

, . < f8 .У(4g - 2) - (̂ g + 5)1-/» 
1 1 1 18e - 17 ) ' 

(ii) /or Q ^ Q0,f is starlike in 

• • V(20g2 - 28g + 9) - (4g - 3) 
1 1 - ( e - i ) 
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These bounds for \z\ are sharp for the functions given by 

^-.{i+flfezjii}-. 

where b is determined by the equation 

fl - (1/g - 1) r»V 
1 2g(l-r2) J 

Goel [3] has proved the above result for the case of # = 1 

- 1WП Í /2 1 - (l/g) br + (1/g - 1) r2 _ f 1 - (1/g - 1) r 

ì-2br + r2 

3. COEFFICIENT ESTIMATES 

Theorem 2. Letf(z) = z + a2z2 + ... be in S(a, /?). Then 

(3.1) |<ij ^ 4)8(1 - a) {1 - 2)8(1 - a) + jj(l - a) n} , (n = 2) 

/or a// t;a/wes of a, )8 (0 g a < 1, 0 < )8 ^ 1). The resw/f is sharp. 

Proof. Letting 

/o «\ ( \ 1 + (2a/̂  - 1) a>(z) , 
(3.2) p(z) = • * " > •}> = 1 + Plz + ..., 

1 + (2)8 - 1) co(z) 
we may rewrite (1.3) as -

z + z2z
2 + ... = z[l + ptz + . . . ] 2 . 

Equating the coefficients of z2m and z2m+1, we get 

(3.3) a2m+l = j * * + 2/>2m + 2 X PrPs, 
r+s-=2m 

and 

(3.4) a2m+2 = 2p2m+1 + 2 _ JPrPs, (m = 1,2,...). 
r + s = 2 m + l 

Further, (3.2) gives 

(3.5) (2)8(1 - « ) + !; (2)8 - 1) pkz
k) co(z) = - _ p,zk . 

fc-=i * = i 

We observe that the coefficient jpn on the right of (3.5) depends only on pu p2i..., pn„ t 

on the left of (3.5). Hence for n = 1, it follows that 

{2)8(1 - a) +"£(2jJ - 1) Pkz
k} co(z) = - £p,z* - £ dfcz*, 

* = 1 * = л + l 
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where £ dkz
k converges in E. Then 

k = n + l 
w - 1 

(3.6) \2p\l - «) + £ (2/? - 1) p.-*| g; | _T ft-* + I d*y|. 
* = 1 fc=l * = n + l 

Squaring both sides of (3.6), integrating round \z\ = r, 0 < r < 1, and finally 
taking the limit as r -> 1, we get 

л - l n - l 

4/J-(l - «)- +£(2/? - I)2 \pk\> Z \Pn\> + Y\Pk\
2 • 

Simplifying and using the relation 0 < /? g 1, we obtain 

(3.7) |p„ |^2 /?( l -a ) , ( n _ i l ) . 

Using (3.7) in (3.3) and (3.4), we obtain 

(3.8) |«2m+1| S 4)8(1 - a) + 8/?2(l - «)2 ( 2 m ^ " 2 ) , 

(3.9) |a2m+2| g 4/?(l - «) + 8/?2(l - «)2 ( 2 m +
2

2 " 2 ) . 

Combining (3.8) and (3.9) we have 

|«„| g 4/?(l - a) + 8/?2(l - «)2 ( ^ 2 ) , 

which yields (3A). 
The equality in (3.1) holds for the function given by 

/ t , ) _ r i - W » - i ) - . T 
' L1 ~ (2J8 - 1) z J 

Remark. Setting a = 1/2 and P = 1 in Theorem 2, we get \an\ g «, (w = 2). This 
result was obtained by Dvorak [2]. Further, replacing a by l/(2a) and setting /?= 1 
in Theorem 2 we have a result obtained in [3]. 
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