
Časopis pro pěstování matematiky

Florian-Alexandru Potra; Vlastimil Pták
Nondiscrete induction and an inversion-free modification of Newton's method

Časopis pro pěstování matematiky, Vol. 108 (1983), No. 4, 333--341

Persistent URL: http://dml.cz/dmlcz/118177

Terms of use:
© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118177
http://project.dml.cz


ČASOPIS PRO PĚSTOVÁNI MATEMATIKY 
Vydává Mattmatickf ústav ČSAV, Praha 

SVAZEK 108 * PRAHA 30.11.1983 * ČÍSLO 4 

NONDISCRETE INDUCTION AND AN INVERSION-FREE 
MODIFICATION OF NEWTON'S METHOD 

FLORIAN A. POTRA, Bucuresti, VLASTIMIL PTAK, Praha 

(Received August 3, 1982) 

1. INTRODUCTION 

The central notion of the method of nondiscrete induction is that of a rate of 
convergence. It is mainly this notion which makes it possible to establish, for a number 
of important iterative processes of numerical mathematics, error estimates sharp for 
the whole length of the process, not only asymptotically. 

In a series of papers [4], [6] — [29], [31] devoted to the development of the method 
of nondiscrete induction, a number of rates of convergence have been described and 
discussed. In all these examples the corresponding rates of convergence were expressed 
in a natural manner as functions of the distances between the successive approxi
mations. 

It is the purpose of the present note to show that it is convenient to extend the 
notion of rate of convergence by admitting functions depending on parameters whose 
meaning is not necessarily that of a distance. 

We intend to apply the method of nondiscrete mathematical induction to an itera
tive process of Newton type, the inverse of the derivative being replaced by an 
approximative inverse. This method was studied before by several authors [l], [2], 
[3], [5], [6], [30]. It is the purpose of the present note to establish the natural rate 
of convergence of this process; in the process of doing so we also obtain a very simple 
proof of the main theorem. 

The "inversion — free" modification of the Newton method is based on the fol
lowing observation. Suppose y is an invertible linear operator on a Banach space 
and suppose g is an approximate left inverse for y such that the error 

1 - gy 

is less than one in norm. Then g is invertible as well and we may write y in the form 

oo 

y = g~\i - (1 - gy)) whence y'1 = (Y. (1 - gy?) g . 
o 
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If we take jtosf trie first two terms of this series we obtain an element 

g' = g?>+{?-^ gy) g 

which is a better approximation of y'1. Indeed, 

1 - g'y = (1 - gyf . 

This leads to the consideration of the following iterative process for a Frechet 
differentiable mapping / from a Banach space X into a Banach space Y. 

Given an approximation x and an approximate inverse G for f'(x) we first con
struct G' by the formula 

(1) G' = (2-G/ ' (x) )G 

and then define the new approximation x' like in the Newton process by setting 

(2) V = x - G ' / ( x ) 

It will be convenient, for further reference, to collect the formulae in a lemma. 

1.1. Let X and Y be two Banach spaces. 

^ D,D'ED(XiY), GGB(Y,p). 
Ifweset , . . . . . . 

:'--• G' = C T 1 ( 1 - GD)G 
then , v v-, • :t . lr 

1 - G'D = (1 - GD)2 

^ ? 1 - G'D' = ( t - GD)2 + G'(D - D') , 

Proof. Immediate verification. 
This lemma will be used in the following situation: we shall consider a Frechet 

difFerpntiable mapping/ defined on an open subset U of X and taking its values in Y. 
Then D will be the derivative at a point x, D = f'{x) and D' = /'(x'J wherex' is 
defined as 

x' = x - G ' / ( x ) . ' ' , 

2. RATES OF CONVERGENCE 

Let The either the set of all positive numbers or a half-open interval of the form 
{t; 0 < t fg f0} for some t0. Let £ be an arbitrary set. A mapping wofT x E into itself 
will be called a rate of convergence on T x E with respect to the first component if 
the series 

5PoWw = s(/,e) 
o 
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is convergent on the whole set T x E. Here P stands for the projection on the first 
component. The sum s(t, e) will be called the estimate function corresponding to *wf 

It satisfies the following functional equation 

5 = t + S o w -• 

on the whole set T x E. 

It is easy to state and prove the corresponding induction theorem. 

2.1. Let X be a complete metric space, Z a set. For each [f, e] e T x E let M(t, e) 
be a subset of X x Z< 

Suppose that 
PM(r, e) c U(PM(w(r, e)), r) 

for each \r, e] e T x E. Then 

PM(r, e) c U(lim PAi(-), s(r, e)) 

for each [r, e] e T x E. Here P is the projection on the first component and 

A?(r) - U M(r, e), lim W(-) = ft ( U W(r))~. 
eeE s>0 r<s 

In the case when a concrete algorithm is given we have the following corollary: 

2.2. Suppose D is a subset of X x Z such that * • 

M(r, e) c D for all [r, e].eTx E. 

Suppose F is a mapping of D into itself which satisfies the following condition 

[x, z\ e M(r, e) implies F(x, z) e M(w(r, e)) , d(x, PF(x, z)) ^ r . 

Then the algorithm 
(xn+1, zn+1) = F(xn, zn) 

starting at a point \x0, z0] G M(r0, e0) is meaningful, the sequence xn converges 
to a point x*eX and 

d(xn, x*) = s(wn(r0, e0)) 

for every n = 0, 1, 2 , . . . . 

It will be convenient to have another characterization of rates of convergence: 
convergence of the series may be replaced, roughly speaking, by the existence of an 
estimate function. 

2.3. Suppose w is a mapping of T x E into itself and let h be a nonnegative 
function defined on T x E such that 

h(r, e) = r + h(w(r, e)) 
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for each [r, e\ e T x E. Then w is a rate of convergence on T x E with respect to 
the first component. If 

Km h(w(n\t, e)) = a 
n-*oo 

exists for'all [f, e] e T x £ 

then 

s(t, e) = h(t, e) — a . 

Proof. It is easy to see that 

h(t, e) = t + w(/, *) + w(2)(f, e) + ... + w(n\t, e) + h(w("+1)(f, *)) 

so that 

t + ... + w(w)(f,e) = fc(f,e) 
for all n. 

3. THE ALGORITHM 

This section is devoted to the study of the natural rate of convergence of the 
algorithm (1)-(2). 

. : . I i 

3.1. Let Q be the set of all pairs (r, e) such that r > 0 and 0 = e < 1. Let a ^ 0. 
Consider the mapping w which assigns to each pair (r, e) e Q the pair 

r> = }r ((1 + e2) + (l - e2) ^ (le2 + (1 - e2) *-) 

e* = e2 + (1 - e2) -
x 

where 

r + (r2 + a2(l - e2)2)1'2 

x = x(r, e) = * ^ _ _ L_Z_ . 

TAen w is a mapping of Q into ttself; if P stands for the first coordinate then the 
series 

£ P o w(1 

0 

converges for each (r, e)e Q and its sum equals x — a. The function x satisfies 
the relation 

x(r\ e') = x(r, e) — r . 

The function g(r, e) = (1 — e2)\x(r, e) satisfies 

(3) 0(r',e') = (l + e')a(r,e) 
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In terms of g the pair r\ e' is given by 

(4) r' = (l + e')(e2r + ig(r,e)r2) 

(5) e' = e2 + g(r, e) r . 

Proof. Consider the iterative procedure (l)—(2) applied to the function/(x) = 
= x 2 — a2. Suppose we are given an r > 0 and an e, 0 ^ e < 1. We intend to show 
that there exists a point x 0 = a und a number g0 > 0 such that the first two steps 
of the iteration satisfy the following relations 

*o ~~ Xi = r 

1 - g02x0 = e 

x x — x 2 = r' 

1 - gx 2xx = e' 

Suppose first that we have an x 0 which satisfies the first two equations. Then, from 
the second equation 

1 - e t ,« , 1 - e2 

go = whence gx = (1 + e) g0 = 2x0 2x0 

and 

*o - *i = дi(xo " <*2) = — (x 2 - a2) 
x0 

2xn 

so that 

(6) r=1-^(x2-a2). 
2x0 

This is a condition on x 0 necessary for the first two equations. It is easy to see that 
the choice 

(7) x-
r+(r+°2(i - e2yy2 

will satisfy the first two equations. 

We intend to show now that the other two equations will be satisfied as well. 
Let us show that 

e' = 1 - 0! 2xx 

r' = xx — x 2 . 

To see that, note first that gt = (1 + e) g0 = (1 - e2)J2x0. 

Hence 

(8) 1 - g, 2xx = e2 + gx 2r = e2 + i — i - 2r = e'. 
2x 0 
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Furthermore, using (6), we obtain 

(9) xt - x2 = g2{x\ - a2) = (1 +V) 9l{x\ - a2) = 

= (l + e ' ) ^ [ ( x 0 - r ) 2 - a 2 ] = 
2x0 

" J =(l + e')r^(x 2-a 2)+^(-2x 0r + r2)l = 
L 2xo ^x 0 J 

= (1 + e') [ r - (1 - e2) r + - ^ . r 2 ! - ir(l + e')Ue2 + - — - A , 

Since 

l + e' = (l + e 2 ) + (l - e 2 ) -
Xл 

by (8) this proves that xt — x2 = r'. 

To complete the proof, let us show now that 

x(r', e') = x(r, e) - r 
and 

^(r',^)-=(l + e')^(r,e). 

To verify the first formula, it suffices, by (6), to prove the equation 

. l-e'2 "'"' 

2{x - r) 

However, we know from (9) that 

[(% - r)2 - a 2 ] 

Г' = (i + Є ' ) 4 x І " C ( X " Г ) " Г ' ű 2 ] 

so that it will be sufficient to prove 

' - ' " . ( i ^ ) 1 - ' 1 

2 ( x - r) v ' 2x ••!. . 
in otherwords ' v 

(10) (1 - e') x = (1 - e2) (x - r) . 

Now, by (8), we have 

1 - e' = 1 - e2 - (1 - ^2) -
" ' ' e* -, :' 

whence our assertion. The formula for # follows from (10) upon multiplying both 
sides by (1 + e')jx(x - r). 

Now we are able to prove the following 
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3.2. Theorem. Let X and Ybe two Banach spdces and letf be a mapping defined 
in a neighbourhood U of a point x0eX and taking its values in Y. Suppose that f 
is Frichet differentiable in U and that the following conditions are satisfied , 

1° there exists a constant k such that \ . , . • 

\f'(x)-f'(y)\^k\x-y\ 

for all x, yeU 

2° there exists a bounded linear operator 

GeB(Y,X) > ,, • • . 

and three numbers e0, g0,r0 such that 

(U) |1 - G/'(x0)| ^ e0 

(12) k\(2-Gf'(x0))G\^g0 

(13) |(2 - Gf'(xo)) Gf(x0)\ £ r0 

3° the numbers e0,g0, r0 satisfy the inequality 

(1 - el)2 ^ 2r0g0 , ... 

4° the domain U contains the closed spherical neighbourhood of x0 with radius 

m 
í-el 2ra -±((l-eiУ-2g0roүi>. 

go 1 - *o go 

Then the process (l) —(2) starting at the point x0 is meaningful and converges to 
a point x* for which 

• • ' ' Gf(**) = 0 and \x* - x0\ <T 

If a stands for the nonnegative square root of 

m 

1 ((I - eiУ - 2g0r0) 
ЯІ 

then 
|x* - xn\ ^ s(wn(r0, e0)), n = 0, 1, 2,... 

where w is the rate of convergence defined in Lemma 3.1. 
... • . •« 

Proof. Let w and g be the mappings defined in Lemma 3.1. For (r, e)e Q we 
shall define a SQt M(r,e) c X x B(Y,X) as follows: the pair \x,G] belongs to 
M(r, e) if and only if the following three conditions are satisfied 

. . • . . . • . ' . . ' > ' | l - G / ' ( x ) | , . g i , •"."• , . • : " " • 

\(2-Gf'(x))G\^±g(r,e) V .' ' ' 
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\(2-Gf'(x))Gf(x)\^r 

Let us prove that [x, G] e M(r, e) implies [x', G'~\eM o w(r, e). Write, for brevity, 
D forf'(x) and D' for f'(x'). Let us show first that |l - G'D'\ g e'. It follows from 
Lemma LI that 

(14) |l - G'D'I <* |(1 - GD)|2 + \G'\ \D - D'\ = 

^ e2 + - g(r, e) kr = e', 
k 

the last equation being a consequence of (5). Next, we have to show that G" = G' + 
+ (1 - G'D') G' satisfies |G"| = (1/fc) #(e', r'). 

We have G" = (2 - G'D') G' so that, using (3) 

G" = (1 + |1 - G'D'|) |G'| = (1 + e') I #(r, e) = i #(r', *') . 

The last inequality to be proved is |G"f(x')| < r'. Since 

G"f(x') = G"(f(x') - f(x) - D(x' - x)) + G"(f(x) + D(x' - x)). 

Using the relations G" = (2 - G'D') G' and G'f(x) = - (x ' - x) we may rewrite 
the second term of the above relation in the form 

(15) G"(f(x) + D(x' - x)) = - (2 - G'D')(1 - G'D)(x' - x) = 

= - (2 - G'D')(1 - GD)2(x' - x) 

so that, using (14), 
|G"f(x')| ^ |G"||fcr2 + (1.+ e') e2r . 

Since |G"| = |(2 - G'D') G'\ = (1 + e')(\jk)g, this yields |G"f(x')| = (1 + e'). 
• (i#r2 + e2r) = *" (see (4)). Conditions (11), (12), (13) ensure that 

[x0, G] eM(r0, e0) . 

It suffices to observe that the parameter a has been chosen so as to have 

g(ro> ^o) = do • 
The proof is complete. 
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