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Časopis pro pěstování matematiky, roČ. 110 (1985), Praha 

A HAMILTONIAN CYCLE AND A 1-FACTOR IN THE FOURTH 
POWER OF A GRAPH 

ELENA WISZTOVA, Zilina 

(Received May 7, 1984) 

By a graph we shall mean a finite undirected graph with no loops or multiple edges 
(a graph in the sense of [1] or [3]). If G is a graph, then the vertex set of G and the 
edge set of G will be denoted by V(G) and E(G), respectively, and if u, v, w e V(G), 
then the degree of u in G and the distance between v and w in G will be denoted by 
degG u and dG(v, w), respectively. 

If G is a graph and n is a positive integer, then the n-th power Gn of G is the graph 
defined as follows: 

V(Gn) = V(G) and E(Gn) = {vv'; v, v' e V(G) and 1 = dG(v9 v') = n] . 

We now mention some results concerning regular factors and hamiltonian proper­
ties of powers of connected graphs. 

Theorem A [5], Let n be a positive integer, and let G be a connected graph of 
order p _ n. Assume that if n is even, then p is also even. Then Gn has an {n — 1)-
factor. 

For n = 2, this theorem was proved in [2] and [8], For n = 3, 4, 5, stronger 
results are known. 

Theorem B [7]. If G is a nontrivial connected graph, then G3 is hamiltonian-
connected. 

Theorem C [4]. If G is a connected graph of even order _-4, then G 4 has a 3-
factor F such that each component of F is a copy of K^ or K3 x K2. 

Theorem D [6]. Let G be a connected graph of order = 5 . Then there exist a hamil­
tonian cycle C of G3 and a hamiltonian cycle C of G5 such that C and C are 
edge-disjoint. 

In the present paper we shall prove the following theorem: 

Theorem 1. Let G be a connected graph of even order _ 4 . Then there exits 
a hamiltonian cycle C of G3 and a 1-factor F of G 4 such that C and F are edge-
disjoint. 
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We say that an ordered pair (T \ r') is a rooted tree if T is a tree and r' e V(T'). 
If (T', r') is a rooted tree, then we say that r' is its root. The root of a rooted tree 
will be drawn as ® in the figures throughout the paper. We say that rooted trees 
(T', r') and (T", r") are isomorphic if T and T" are isomorphic and there exists an 

Fig. 1. 

isomorphism from T onto T" which maps r onto r". Let T be a tree. Similarly as 
in [6], by a terminal subtree of Twe shall mean a rooted tree (T', r') with the pro­
perties that T is a subtree of T and for each ve V(T' — r'), degr, v = deg r v. 

The following notions will be useful for us. 
Let Tbe a nontrivial tree, and let u and v be adjacent vertices of T. Then T — uv 

is a forest with exactly two components. We denote by T(w, v) or T(v, u) the com­
ponent of T — uv which contains u or v, respectively. 
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Let m _ 0 and n _ 1 be integers, and let u0,..., um9 wl9..., wn be mutually distinct 
vertices. 

We denote by Bmn the path with 

V(Bmn) = {um9..., w0, wl9..., wn} and 

E(Bmn) = {t/ytty-i; m _ j > 0} u {u0wx} u (wfcwA + 1; 1 _ k _ « - 1} . 

We define the following sets of rooted trees: 

Dmn = (Bmn,
 wo)> 

Dmn* = (Bmn - w,^^ + w„_2w»> "o)> for n _ 3; 

£*m„ = (£,„,. - KM-iWm + um-2um9 u0)9 for m _ 2; 

-^*mn* = (-9W„ - "„- iW m - W„_1W„ + Ul7I_2Wm + H'„.2W„, u0), 

for m _ 2, H _ 3, and 

Dmn** = (-5W„ - w ^ w , . + w^w, , , II0), for n _ 4. 

Denote 

D = |D*21> I1*22> I^22> I^23*> -^23> ^*31> ^31> I^*33*> I^*33> -^33> -^04**> 

I^04*> -^04/5 

_ * ' - _ > - {D 3 3 } > 

/ " = {Jl5..., J6}, where J1?..., J6 denote the rooted trees in Fig. 1. 

Lemma 1. Let T be a tree of order _ 5 . Then there exists a terminal subtree 
(T0, r0) of T such that either (T0, r0) is isomorphic to one of the elements of Q)[\ 
or (T0, r0) is isomorphic to D33 and deg- r0 _ 4, or (T0, r0) is isomorphic to one 
of the elements of cf. 

Proof. If |V(T)| = 5, the statement of the lemma is correct. Assume that |V(T)| _ 
_ 6. Then there exist adjacent vertices u and v such that |V(T(w, v))\ _ 5 and 
|V(T(w, u))| _ 4 for every vertex w + v such that uw e E(T); cf. the proof of Lemma 
1 in [5]. It is easy to see that there exist a subtree Tx of T(u9 v) and r1 e V(T)iSuch 
that (Tl9 rt) is a terminal subtree of Tand (Tl9 rt) is isomorphic to one of the ele­
ments of Q). If there exists a terminal subtree (T0, r0) of Tsuch that either (T0, r0) is 
isomorphic to D33 and deg7 r0 _ 4 or (T0, r0) is isomorphic to an element of &\ 
then the statement of the lemma is correct. We shall assume that for every terminal 
subtree (V9 r') of T, if (V9 r') is isomorphic to an element of _*, then (T'9 r') is iso­
morphic to L>33 and deg- r' < 4. Then |V(T)| _ 10. There exist adjacent vertices x 
and y of Tsuch that |V(T(x, y))\ _ 8 and |V(T(z, x))\ _ 7 for every vertex z + y 
such that xz e E(T). We denote by T* the subtre of Tinduced by V(Tyx, y)) u {y}. 
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If deg r x = 2, then (T*, y) is a terminal subtree of T and it is isomorphic to J1# 

Let deg r x =1= 2. Then deg r x = 3. It is easy to see that there exists a subtree T2 of 
T(x, y) such that (T2, x) is a terminal subtree of T which is isomorphic to an element 
of {J2, J3, J4, J5, J6}, where J2 denotes the rooted tree in Fig. 2. If there exists 
a terminal subtree (T0, r0) of T which is isomorphic to an element of J' — {J2}, 
then the statement of the lemma is correct .Assume that no terminal subtree of Tis 
isomorphic to an element of / - {J2}. Then (T(x, y), x) is isomorphic to J2 and 
deg r x = 3. This means that (T*, y) is a terminal subtree of T which is isomorphic 
to J2. 

Thus the lemma is proved. 

Fig. 2. 

If G is a graph, then we denote by Jtf(G) and ^(G) the set of hamiltonian cycles 
of G and the set of 1-factors of G, respectively. 

Lemma 2. Let S be a tree which contains a terminal subtree (T0, r0) isomorphic 
to D03. Let f be an isomorphism mapping D03 onto (T0,r0). Assume that there 
exist C e J^(S3) and F' e #"(54) such that E(C) n E(F') = 0. Then there exist 
C e 34f(S3) and F e ^(S*) such that either 

E(C) n E(F) cz {f(w,)f(w2), f(w2)f(w3)} c= E(C) 

or 
E(C) n E(F) c: {j(w.)j(w3), f(w2)j(w3)} c E(C). 

Proof. For the sake of simplicity we shall assume that (T0,r0) = D03. Then 
r0 = w0. If {w1w2, w2w3} q: E(C) or {WJLW3, W2W3} C E(C), we put C = C and 
F = F\ Let {wxw29 w2w3} - E(C) + 0 and {w±w3, w2w3} - E{C) * 0. We denote 
by C one of the two orientations of the cycle C . Let £ denote the set of all directed 
arcs of the directed cycle C. For every i e {1, 2, 3} there exist at, bt e V(S) such that 
(ah wt), (wi9 b() G £. We now distinguish two cases. 

1. Let w2w3 G E[C). Without loss of generality let (w2, w3) G E. Since wxw2, wtw3 $ 
4E(C), we have [al9 a2, bt, b3} n {w1? w2, w3} = 0. If a1a2 $E(F'), then we put 
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C = C - w1ai - w2a2 + wxw2 + aia2 and F = F'. 

If axa2 e F(F'), then we put 

C = C — WibjL — W3b3 + W ^ + 6 ^ 3 , 

F = F' if bib3^E(F'), 

F = F' - aia2 - b1b3 + a^! + a2b3 if btb3eE(F'). 

2. Let w2w3 <£ E(C). Then u0w3, w ^ e E(C). Without loss of generality let 
("o, w3), (w3, wx) e £. We put 

C = C — w2a2 — u0w3 + w2w3 + u0a2. 

If u0a2$E(F'), we put F = F'. Let u0a2eF(F'). There exists y e V(S) such that 
w3y e E(F'). Since u0 + w3 =f= a2, we have y $ {u0, a2}. If yu0 e E(C), we put 

F = F' - u0a2 - w3y + u0w3 + a2y. 

If Ĵ uo ^ £(C), we put 

F = F' - u0a2 - W3J!" + u0J!" + w3a2, if w3a2 £ E(C), 

• F = F' — u0a2 - w3y + u0w3 + a2y, if w3a2 e F(C). 

In all cases C and F have the desired properties. 

Lemma 3. Let S be a tree which contains a terminal subtree (T0, r0) isomorphic 
to D03%. Let f be an isomorphism mapping D03% onto (T0, r0). Assume that there 
exist C e 3#{s3) and F' e J^(54) such that E(C) n F(F') = 0. Then there exist 
C e 3>?(S3) and F e 3?(SA) such that 

\E(C) n {f(w,)f(w2), f(w2)f(w3), / ( W l ) / ( w 3 ) } | = 2 
and 

E(C) n E(F) cr {/(wj/ tw,), f(w2)f(w3), f(w1)/(w3)} . 

Proof. For the sake of simplicity we shall assume that (T0, r0) = D03*. We denote 
U = E{C) n {wxw2, w2w3, w ^ } . Obviously |U| = 2. If |U| = 2, we put C = C 
and F = F'. Let |U| ^ 1. We denote by C one of the two orientations of the cycle C\ 
Let £ denote the set of all directed arcs of the directed cycle C. For every i e {1, 2, 3}, 
there exist ah bt e V(S) such that (ah wt), (wh bt) e £. For arbitrary j , k e (1, 2, 3}, 
the following implications hold: 

if a}, ak ^ {wl5 w2, w3}, then ds(aj, ak) = 3; 

if bp bk $ {wu w2, w3}, then ds{bj9 bk) = 3; 

if ap bk £ {wl9 w2, w3} and j 4= fc, then d^aj9 bk) = 3. 

We distinguish two cases. 
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1. Let |U| = 1. There exist i,j e {1, 2, 3} such that (wh wy) e £. We denote by k 
the only element of the set {1,2,3} — {i,j}. The fact that |U| = 1 implies that 
ah bp ak, bk $ {wx, w2, w3}. If atak $ E(F') we put 

C = C — wfii — wkak + wtwh + atak and F = F'. 

If atak e E(F') and b}bk $ E(F'), we put 

C = C — Wjbj — wkbk + WjWk + bjbk and F = F'. 

Let aiakeE(F') and bjbkeE(F'). Then ahak,b},bk are distinct vertices. Wc put 

C = C - w b̂,- - wkbk + WjWk + b,.bk, 

F = F' — atak — bjbk + a,bj + akbk. 

2. Let |U| = 0. There exist distinct i,j, he {l, 2, 3} such that wy belongs to the 
directed path from wt to wk in C and a^j, a}ak £ E(F'). If b{bk $ E(F'), we put 

C = C - wtbi - Wj-aj - wkak - wkbk + w^wk + WjWk + a7ak + b;bk, 

F = F'. 

If btbk e E(F'), then bjbk $ E(F'), and we put 

C = C — wtai — Wj-aj — Wjbj — wkbk + wtWj + WjWk + ataj + b;bk, 

F = F ' . 
We can see that C and F have the desired properties. 

Remark 1. Let S be a tree and let C e ^f (S3). Then for every vertex v e V(S) 
with degs v = 2 we can find a pair of vertices (p(v), \j/(v) e V(S — v) such that 
4>(v) iA(̂ ) e £(C), v ^(v) e E(S) and 1 = ds(v, ^(v)) = 2. 

Lemma 4. L£f T be a tree of even order p = 4. Then there exist C e J4?(T3) a/.cf 
F € J^(T4) such that E(C) n E(F) = 0. 

Proof. If p = 4, then T3 is the complete graph, and the proposition of Lemma 4 
is correct. Let p = 6. Assume that for every tree T' of order p', where 4 = p' < p 
and p' is even, it is proved that there exist C e 3f((T')3) and F' e ^{(T)4) such 
that E(C) n F(F') = 0. 

It follows from Lemma 1 that T has a terminal subtree (T0, r0) such that either 
(T0, r0) is isomorphic to D33 and deg r r0 = 4, or (T0, r0) is isomorphic to an element 
of Q)' u / . For the sake of simplicity we shall assume that (T0, r0) e Q)' u / , or 
(T0, r0) = D3 3 and deg r r0 = 4. If (T0, r0) e ®, then r0 = w0, and there exist 
m = 0, n = 1 such that V(T0) = {um,..., u0, wl9 ..., wn};if(T0, r0) e / , then r0 = x t 

and there exist integers m and n such that V(T0) = {xx, ..., x3, yx, ..., ym, zl9 ..., z,.}. 
We now distinguish two cases and several subcases. 
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1. Let (T0, r0) e (£*2 1 , D*22, D22, D23*> #23> #*33*}- Denote 

S = T - ux - u2 if (T0, r0) 4= 1)*33*, and 

5 = T - w, - w2 - w3 - u3 if (T0, r0) = D*33*. 

It is clear that |V(S)| = 4. Since |V(S)| is even, it follows from the induction assump­
tion that there exist C e JT(S3) and F' e ,F(S4) such that F(C) n F(F') = 0. 

1.1. Let (T0, r0) e {D*2i, D*22}- There exist x, y e V(S) such that W^EE^') 

and w ^ e F(F'). Since E(C) n F(F') = 0, x + j / . 
We define 

C = C — WjX + WlUl + uju2 + U2X a n < i 

F = F' - wxy + Wiu2 + ywi; 

then C e Jf(T% F e &(T% and F(C) n F(F) = 0. 

1.2. Let (T0, r0) e {D22? D23*> ^23}- There exists x e V(S) such that w{x e F(C), 
and if n = 3, then x + w3. It is clear that there exists y e V(S) such that w2y e F(F'). 
We define 

C = C — WjX + WtW2 + W2W1 + ulxl 

then C e Jf\T3). Let j + x; we define 

F = F' ~ w2y + w2u2 + yMi5 

then F e #"(T4) and F(C) n F(F) = 0. Let y = x; we define 

F = F' — w2y + w2ui + j;u2; 

then F e #"(T4) and £(C) n F(F) = 0. 

1.3. Let (T0, r0) = D*33*. There exist x, y e V(S) — {uu u2} such that xul9 yu2 e 
e E(C). We define 

C = C — Xui — J!u2 + xwl + W1W2 + W2W3 + W3u! + J!u3 + u3u2, 

F = F' + wxw3 + w2u3; 

then C e Jt?(T3), F e ^ ( T 4 ) , and E{C) n F(F) = 0. 

2. Let (T0, r0) <£ {D*2i, D*22, D22, D23*, D23, D*33*}. Then (T0, r0) e {D*3i, D31» 
£*33> ^33. D04**, D04*, D04} u / and if (T0, r0) = D33 then deg r r0 = 4. 

2.L Let deg r r0 — deg7o r0 = 2. If (T0, r0) ^ / , then we denote 

S = T — wx — ... — wn — ui — ... — t/w if m = 3 and 

S = T — Wi — ... — wn if m = 0. 
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If (T0, r0) e /", then we denote 

S = T- x2 - x3 - y1 - ... - ym - zx - ... - z„. 

Since |V(S)| ^ 4 and |V(S)| is even, it follows from the induction assumption that 
there exist C e Jf(S3) and F' G J^(54) such that F(C') n F(F') = 0. 

Let (p(r0), il/(r0) be vertices selected in accordance with Remark 1. We define 

C = C — (p(u0) ij/(u0) + ij/(u0) wx + w tu2 + u2u3 + u3u! + u! (p(u0) and 

F = F' + W l u 3 + u!u2 if (T0, r0) G {D*31, D31}; 

C = C - (p(u0) (vy(u0) + ^(u0) wx + wYw3 + w3w2 + W2uj + uju3 + u3u2 + 

+ u2 (p(u0) and 

F = F" + uiW3 + u2w2 + u3Wi if (T0, r0) e {D*33> £33}; 

C = C' — (p(u0) ^(w0) + ^(uo) w i + wivv3 + w3w4 + w4w2 + w2 (p(u0) and 

F = F' + Wlw4 + w2w3 if (To, r0) e {D04**, D04*, D04}; 

C = C' - (p(xx) ^(Xi) + ^(x t) x2 + x2yt + ji>'3 + j'3>>2 + y2zi + z ^ + 

+ z3z2 + z2z3 + x3 (p(xi) and 

F = F' + x2x3 + ^ 3 + y3zi + j!2z2 if (T0, r0) = Jx; 

C = C - (p(xx) ^(xx) + i/^Xi) x2 + x2zx + zxx3 + x3><2 + y2y4 + j;4>'3 + 
+ y3y5 + ysy? + y7y6 + y6yi + yi <p{*i) and 

F = F' + x2x3 + z1y1 + y2y7 + .y3>6 + y4y5 if (T0, r0) = J2; 

C = C' - <p(xA) ^(xx) + i/J(xi) x2 + x2Z! + zxx3 + x3y! + j!!>'3 + y3y4 + 

+ y4y2 + y2y6 + y6y7 + y7y5 + y5 <P(*l) a i l d 

F = F' + x2x3 + z ^ ! + j/2>;7 + y3y6 + j ; 4 j 5 if (T0, r0) e [J3, J4}; 

C = C - ^(XX) ^(XX) + lA(*l) *3 + *3y l + yly3 + y3y2 + y2*2 + *2Z2 + 

+ z2z3 + z3zt + zx (B(xj) and 

F = F' + x2x3 + ytz3 + j;2z2 + j3Z! if (T0, r0) = J5; 

C = C - ^(Xi) i/vq) + ^(xx) x2 + x2j2 + y2y3 + y3y{ + yly5 + j5j6 + 

+ y6y4 + y4*3 + *3Z2 + Z2Z3 + Z3Z1 + Z1Z5 + Z5Z6 + Z6Z4 + 

+ z4 (p(xt) and 

F = F' + x2x3 + yxy6 + y2y5 + j 3 j 4 + z ^ + z2z5 + z3z4 if (T0, r0) = J6. 

Obviously, C G ̂ f (F3), F G #"(T4) and F(C) n F(F) = 0. 

2.2 Let deg r r0 — degro rQ < 2. Then (T0, r0) + D33. Since |V(F0)| is odd, we 
have degr r0 — degro r0 = 1. We denote 

S = T - wx - u3 if (F0, r0) G {/)*31, 1)3i}; 

S = T - Wl - w2 - w3 - t/3 if (T0, r0) = D*33; 

S = T - w3 - w4 if (T0, r0) G {D04**, D04*, D04] and 

S = T - yx - ... - ym - zx - ... - zn if (F0, r0) e f. 
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Since |V(S)| = 4 and (V(S)| is even, it follows from the induction assumption that 
there exist C e ^ ( S 3 ) and F' e &(S4) such that E(C) n F(F') = 0. Since deg r r0 -
— degro r0 = 1, S contains a terminal subtree isomorphic to D03 or D03*. 

2..-.1. Let (T0, r0) e {D^3i, D3l9 D%339 D04l|:H{, D04*, D049 Jl9 J2, J3, J4j. Then S 
contains a terminal subtree isomorphic to D03. Lemma 2 implies that: 

if (T 0 , r 0 )e {^31,^)31,^33}, there exist ie{l,2}, Ce^f(S3) and F e ^(S4) 
such that F(C) n E(F) c {u0ui9 utu2} c E(C); 

if (T0, r0) e {D04**, D04*, 1)04}, there exist 1 e {1, 2), C e ^T(S3) and F e ^(S4) 
such that F(C) n E(F) c {w0wi5 wxw2} c F(C); 

if (T0, r0) e {Jx, J2, J3, J4}, there exist i e {2, 3}, C e JT(S3) and F e #"(S4) such 
that E(C) n E(E) c {x^-, x2x3} c E(C). 
We define 

C = C — u0ut — uiu2 + u0Wi + wxut + w2u3 + u3ui and 

F = F + Wlu3 if (T0,r0)e{D*3l9D31}; 

C = C — u0u{ — uxu2 + u0w3 + w3w2 + w2Wi + w^i + uiu3 + u3u2 and 

F = F + u3w2 + WiW3 if (T0, r0) = D*33; 

C = C — u0wf — wxw2 + u0w3 + w3wt + WiW4 + w4w2 and 

F = E + w3w4 if (T09 r0) e {D04**, D04*, D04}; 

C = C - Xlxt - x2x3 + Xi^i + y1y3 + y3y2 + y2xt + x2zx + zxz2 + 

+ z2z3 + z3x3 and 

F = F + j i z 3 + y2z2 + j3Zi if (T0, r0) = J2; 

C = C - XiXf - x 2 x 3 + Xij;2 + y2y4 + y4y3 + >'3>'5 + y5y7 + y7y6 + 

+ yeyi + yixt + x2z1 + ZiX3 and 

F = F + ylZl + yiyi + j / 3 j ; 6 + y4y5 if (T0, r0) e {J2, J3, J4}. 

Obviously, C e Jt?(T3)9 F e &(T4) and E(C) n F(F) = 0. 

2.2.2. Let (T0, r0) e {J5, J6}. Then S contains a terminal subtree isomorphic 
to D03*. It follows from Lemma 3 that there exist C e J4?(S3) and F e ^ ( S 4 ) such that 

E(C) n E(E) c {xix2, xxx3, x2x3} and |EvC) n {xxx2, XiX3 ,x2x3}| = 2. 

Hence there exists i e {1, 2} such that xfx3 e E C). We put j = 1 if i = 2 and j = 2 
if / = 1. There exists k e {1, 2, 3} — {j} such that XjXk e E\C). 

We define 

C = C - X;X3 - XjXk + x3yx + yi>'3 + y3y2 + y2X; + x*Zi + z1z3 + 

+ z3z2 + z2xy and 

F = F + yxz3 + j 2 z 2 + ^3Zi if (T0, r0) = J5; 

C == C - XfX3 - XjXk + X3Z2 + Z2Z3 + Z3Z1 + Z!Z5 + z5z6 + z6z4 + 

+ z4x, + x^yi + j/ iy3 + y3y2 + i/2y4 + >'4y6 + y6y5 + y5Xj and 

F = F + j;1j;6 + j;2j;5 + y 3 y 4 + Z i Z 6 + Z2Z5 + Z3Z4 if (F 0 , r0) = J 6 . 
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Obviously, C e ^ ( T 3 ) , F e 3?(T4) and E(C) n E(F) = 0. 
Thus the proof of Lemma 4 is complete. 
Theorem 1 immediately follows from Lemma 4. 
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