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A HAMILTONIAN CYCLE AND A 1-FACTOR IN THE FOURTH
POWER OF A GRAPH

ELENA WIszTOVA, Zilina
(Received May 7, 1984)

By a graph we shall mean a finite undirected graph with no loops or multiple edges
(a graph in the sense of [1] or [3]). If G is a graph, then the vertex set of G and the
edge set of G will be denoted by V(G) and E(G), respectively, and if u, v, w € V(G),
then the degree of u in G and the distance between v and w in G will be denoted by
degg u and dg(v, w), respectively.

If G is a graph and n is a positive integer, then the n-th power G" of G is the graph
defined as follows:

V(G") = V(G) and E(G") = {w';v,v' e V(G) and 1 = dg(v,v') < n}.
( G 5

We now mention some results concerning regular factors and hamiltonian proper-
ties of powers of connected graphs.

Theorem A [5]. Let n be a positive integer, and let G be a connected graph of
order p > n. Assume that if n is even, then p is also even. Then G" has an (n — 1)-
factor.

For n = 2, this theorem was proved in [2] and [8]. For n = 3,4, 5, stronger
results are known.

Theorem B [7]. If G is a nontrivial connected graph, then G* is hamiltonian-
connected.

Theorem C [4]. If G is a connected graph of even order 24, then G* has a 3-
factor F such that each component of F is a copy of K4 or K5 X K,.

Theorem D [6]. Let G be a connected graph of order 2 5. Then there exist a hamil-
tonian cycle C of G* and a hamiltonian cycle C' of G’ such that C and C' are
edge-disjoint.

In the present paper we shall prove the following theorem:

Theorem 1. Let G be a connected graph of even order =4. Then there exits
a hamiltonian cycle C of G* and a 1-factor F of G* such that C and F are edge-
disjoint.
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We say that an ordered pair (T”, ) is a rooted tree if T is a tree and r’ € V(T").
If (T', r’) is a rooted tree, then we say that #’ is its root. The root of a rooted tree
will be drawn as ® in the figures throughout the paper. We say that rooted trees
(T’, ') and (T”, r") are isomorphic if T" and T" are isomorphic and there exists an

1.'

J3;

J5: %
Fig. 1.

isomorphism from T’ onto.T” which maps " onto #". Let T be a tree. Similarly as
in [6], by a terminal subtree of T we shall mean a rooted tree (7", ) with the pro-
perties that T is a subtree of T and for each ve V(T' — r'), deg,. v = degy v.

The following notions will be useful for us.

Let T be a nontrivial tree, and let u and v be adjacent vertices of T. Then T — uv
is a forest with exactly two components. We denote by T(u, v) or T(v, u) the com-
ponent of T — uv which contains u or v, respectively.
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Let m = 0and n = 1 be integers, and let uy, ..., u,, Wy, ..., W, be mutually distinct
vertices.
We denote by B,,, the path with

V(Bu) = {tms ..., Ugy Wy, ..., W,} and
E(B,,) = {uu;_y; m 2 j >0} u{ugw,}u{wwey; 1 Sk<n—1}.

We define the following sets of rooted trees:

D,, = (Bmm ”0)’

Dmn* = (an = W,W, + W,,_ZW,;, u0)9 for n = 3,

Dymn = (Byn — Up— Uy + Uy ally, Ug), fOr m = 2;

D*mn* = (an - um—lum - wn—lwn + um—2um + wn-Zwm uO)’

for m =22, n = 3, and

Dppsex = (Buw — Woe 1W, + Wy_3W,, tg), for n = 4.
Denote
D = {D*Zl, D*229 D22, D23*a D23’ D*Sl, D313 D*33*: D*331 D33’ D04**,

Do4ss Doals
P2 =9 - {Dss} s
F ={J1, ..., Jg}, where Jy, ..., J¢ denote the rooted trees in Fig. 1.

Lemma 1. Let T be a tree of order =5. Then there exists a terminal subtree
(To» 7o) of T such that either (Ty, 1) is isomorphic to one of the elements of 9,
or (Ty, ro) is isomorphic to Dss and degrro 2= 4, or (To, 1) is isomorphic to one
of the elements of ¢.

Proof. If [V(T)| = 5, the statement of the lemma is correct. Assume that |V(T)| =
2 6. Then there exist adjacent vertices u and v such that [V(T(u,v))| = 5 and
[V(T(w, u))| < 4 for every vertex w =+ v such that uw € E(T); cf. the proof of Lemma
1in [5]. It is easy to see that there exist a subtree Ty of T(u, v) and r; € V(T),such
that (Ty, ry) is a terminal subtree of T and (T}, ry) is isomorphic to one of the ele-
ments of 2. If there exists a terminal subtree ( T, ro) of T such that either (To, 7o) is
isomorphic to Dy3 and degy ro = 4 or (Tp, ro) is isomorphic to an element of &',
then the statement of the lemma is correct. We shall assume that for every terminal
subtree (T’,7') of T, if (T”, r’) is isomorphic to an element of 2, then (T, r') is iso-
morphic to D33 and degr r’ < 4. Then |V(T)| 2 10. There exist adjacent vertices x
and y of T such that |V{T(x, y))| = 8 and |[V(T(z, x))| £ 7 for every vertex z + y
such that xz € E(T). We denote by T* the subtre of T induced by V(T(x, y)) u {y}.
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If degr x = 2, then (T*, y) is a terminal subtree of T and it is isomorphic to J;.
Let degy x =& 2. Then deg, x = 3. It is easy to see that there exists a subtree T, of
T(x, ) such that (T, x) is a terminal subtree of T which is isomorphic to an element
of {J3, Js, J4, Js, J6}, Where J; denotes the rooted tree in Fig. 2. If there exists
a terminal subtree (To, ro) of T which is isomorphic to an element of ¢ — {J,},
then the statement of the lemma is correct .Assume that no terminal subtree of T is
isomorphic to an element of # — {J,}. Then (T(x, y), x) is isomorphic to J and
degr x = 3. This means that (T*, ) is ‘a terminal subtree of T which is isomorphic
to J,.

Thus the lemma is proved.

Fig. 2.

If G is a graph, then we denote by s#(G) and %#(G) the set of hamiltonian cycles
of G and the set of 1-factors of G, respectively.

Lemma 2. Let S be a tree which contains a terminal subtree (T,, ro) isomorphic
to Do;. Let f be an isomorphism mapping Dy onto (T, ro). Assume that there
exist C' € #(S%) and F'e F(S*) such that E(C')n E(F') = 0. Then there exist
C e #(S®) and F € #(S*) such that either

E(€) n E(F) < {f(w) f(w). 1(w) [(w)} < E(O)

E(C) n E(F) < {f(w1) f(w3), f(w2) f(w3)} = E(C).

Proof. For the sake of simplicity we shall assume that (T;, o) = Doj. Then
ro = uo. If {wyw,, wows} < E(C') or {wyws, wows} = E(C), we put C = C’ and
F = F'. Let {wyw,, wyws} — E(C’) & 0 and {wyw;, wows} — E/C') + 0. We denote
by C one of the two orientations of the cycle C’. Let E denote the set of all directed
arcs of the directed cycle C. For every i € {1, 2, 3} there exist a;, b; € V(S) such that
(ai, w;), (w;, b;) € E. We now distinguish two cases.

1. Let wow; € E(C’). Without loss of generality let (w,, w,) € E. Since wyw,, wyw; ¢
¢ E(C'), we have {ay, ay, by, b3} 0 {wy, wy, w3} = 0. If a,a, ¢ E(F’), then we put
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C=C —wa, —wya, +ww, +aya, and F=F,

If a,a, € E(F'), then we put

@]

= C" — wyb; — w3bs + wyw; + b,bs,
= F' if bybs ¢ E(F),
F = F’ - alaz - b1b3 + albl + a2b3 if blbaEE(F’).

o]

2. Let w,w; ¢ E(C'). Then uows, w,ws € E(C'). Without loss of generality let
(1o, w3), (w3, w,) € E. We put
C = C' — wya, — ugws + wows + ua,.
If uga, ¢ E(F"), we put F = F'. Let uqa, € E(F'). There exists y € V(S) such that
wyF € E(F’). Since uy + w3 # a,, we have J ¢ {40, a,}. If yu, € E(C), we put
F=F — uga, — wsy + ugw; + a,j.
If ju, ¢ E(C), we put
F = F — uga, — w3y + uoy + wia,, if waa, ¢ E(C),
F=F —uga, — wyj + ugws + a,5, if wia, € E(C).

In all cases C and F have the desired properties.

Lemma 3. Let S be a tree which contains a terminal subtree (T,, ro) isomorphic
to Dy34. Let f be an isomorphism mapping Doz 4 onto (T, ry). Assume that there
exist C' € #(S*) and F'e F(S*) such that E(C') n E(F') = 0. Then there exist
C e #(S%) and F € #(S*) such that

|E(C) 0 {f(w1) f(w2), f(w2) f(wé), f(wy) f(w)}] = 2
E(C) n E(F) < {f(wy) f(w2), f(w2) f(w3), F(ws) f(w3)} -

Proof. For the sake of simplicity we shall assume that (Tp, 7o) = Do3+. We denote
U = EC") n {wyw,, wows, w,w;}. Obviously |U| £ 2. If |U| = 2, we put C = C’
and F = F'. Let [U| £ 1. We denote by C one of the two orientations of the cycle C'.
Let E denote the set of all directed arcs of the directed cycle C. For every i e {1, 2, 3},
there exist a;, b; € V(S) such that (a;, w;), (w;, b;) € E. For arbitrary j, ke {1, 2, 3},
the following implications hold:

and

if a;, a, ¢ {wy, wy, w3}, then dslaj, ;) < 3;
if b;, by ¢ {wy, wy, w3}, then ds{bj, b)) < 3;
if aj, by ¢ {wy, ws, w3} and j #+ k, then dga;, b,) < 3.

We distinguish two cases.
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1. Let |U| = 1. There exist i, j € {1, 2, 3} such that (w;, w;) € E. We denote by k
the only element of the set {1,2,3} — {i,j}. The fact that |U| = 1 implies that
a;, by, ay, b ¢ {wy, wy, ws}. If a,a, ¢ E(F') we put

~

C=C —wa; —wa, + ww, + aa, and F = F'.
If a;a, € E(F') and b;b, ¢ E(F'), we put
C=C —wjb; — wb, + wyw, + b;b, and F = F'.
Let a;a; € E(F') and b;b, € E(F'). Then a;, a,, b;, b, are distinct vertices. We put
C =C — wjb; — wb, + wyw, + b;b,,
F=F —aa, —bb, +ab; +ab,.

2. Let |U| = 0. There exist distinct i, j, k € {1, 2, 3} such that w; belongs to the
directed path from w; to w, in C and aa;, a;a, ¢ E(F’). If b;b, ¢ E(F’), we put

J
C=C —wb, — wja; — wa, — wb, + ww, + w,w, + aa, + bb,,
F=F.
If b;b, € E(F'), then b;b, ¢ E(F'), and we put
C=C —wa; —wja; —w;b; — wb, + ww, + wyw, + aa; + bb,

F=F.
We can see that C and F have the desired properties.

Remark 1. Let S be a tree and let C e #(S*). Then for every vertex v e V(S)
with deggv = 2 we can find a pair of vertices @(v), Y(v) € V(S — v) such that
@(v) Y(v) € E{C), v ¢(v) € E(S) and 1 < dg(v, Y(v)) < 2.

Lemma 4. Let T be a tree of even order p = 4. Then there exist C e ,%”(T“) and
F e #(T*) such that E(C) n E(F) = 0.

Proof. If p = 4, then T3 is the complete graph, and the proposition of Lemma 4
is correct. Let p = 6. Assume that for every tree T’ of order p’, where 4 < p’ < p
and p’ is even, it is proved that there exist C’' € #((T')’) and F'e Z((T')*) such
that E(C") n E(F') = 0.

It follows from Lemma 1 that T has a terminal subtree (T, ro) such that either
(To, ro) is isomorphic to D33 and degy ro = 4, or (T, ro) is isomorphic to an element
of 2" U #. For the sake of simplicity we shall assume that (T,, ro) € 2" U #, or
(To, ro) = D33 and degypro = 4. If (T, ro) € D, then ry = uy, and there exist
m = 0,n = 1suchthat V(Ty) = {tp, ..., g, Wy, ..., w,};if (To, 7o) € £, then ry = x,
and there exist integers m and n such that V(To) = {X{, ..., X3, V15 -<es Vs Z1» +en Zn)-
We now distinguish two cases and several subcases.
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1. Let (Ty, ro) € {Dy21, Dx22, Dyys Dasss Das, Dysss). Denote
S = T—‘ ul - “2 if (To, ro) :*: D*33*, and
S=T—w, —w, —wy —uy if (Ty, 7o) = D3z
It is clear that |V(S)| = 4. Since |V(S)| is even, it follows from the induction assump-

tion that there exist C’' € #(S?) and F' € #(S*) such that E(C') n E(F') = 0.

1.1. Let (Tp, ro) € {Dxa21> Dyaa}. There exist x, y e V(S) such that wyx e E(C’)
and w,y € E(F'). Since E(C') n E(F') =0, x * y.
We define

C=C —wx + wu, +uu, +u,x and
F=F —wy+ wu, + yu;
then C e #(T?), F e #(T*), and E(C) n E(F) = 0.

1.2. Let (Ty, ro) € { D22, D334, D;3}. There exists x € V(S) such that w,x e E(C"),
and if n = 3, then x = wj. It is clear that there exists y € V(S) such that w,y € E(F").
We define

C=0C —wx+ wiy + uy + u;Xx;
then C e # T?). Let y + x; we define
F=F — w,y + wyu, + yuy;
then F e #(T*) and E(C) n E(F) = 0. Let y = x; we define
F =F — wyy + wyuy + yu,;
then F e #(T*) and E.C)n E(F) = 0.
1.3. Let (T, o) = Dy334. There exist x, y € V(S) = {uy, u,} such that xu,, yu, e
€ E(C"). We define
C=0C —xu;y — yuy + xwy + wiw, + wows + Wity + yuz + usu,,
F =F + ww; + wyus;

then Ce #(T?), Fe #(T*), and E.C) n E(F) = 0.

2. Let (To, Vo) ¢ {D*zn D423, D33, Da3y, Dss, D*ss*}- Then (To, "o) € {D*sn Dy,
D33, D33y Dogsess Doaxs Do4} v # and if (Ty, ry) = D33 then degy ry = 4.

2.1. Let degy ry — degy, ro = 2. If (T, 1) ¢ 7, then we denote
S=T—-w,—...—w,—uy —...—u, if m=3 and

S=T—-w,—...—w, if m=0.
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If (Ty, 7o) € £, then we denote

S=T—x2-—X3—y1—...-—-ym—Zl—...——Z

Since |[V(S)| = 4 and |V(S)| is even, it follows from the induction assumption that
there exist C' € #/(S?) and F’' € #(S*) such that E(C') n E(F') = 0.

Let ¢(ro), ¥(ro) be vertices selected in accordance with Remark 1. We define

C = C" — o(ug) Y(uo) + Ylug) wy + wyuy + uyuz + usuy + uy @luy) and

F =F + wus + uguy if (Ty, ro) € {Dusys D3y

C =C" — o(ue) Y(uo) + W(ug) wy + wyws + waw, + wouy + uyuz + tsu, +

+ u; ¢(u,) and
F =F + uywy + uywy + uywy if (T, ro) € {Dy33s D3}

C = C = @(uo) Yluo) + W(uo) Wy + Wiws + wawy + waw, + 1, @lug) and
F =F 4+ wywg + wywy if (To» "o) € {Do4=1<*, Dogses D04};
C=C — o(x)) '/’(xx) + l//<xl) Xy + X2yy + Yiys + Vaya + Yoz + zyz75 H-
+ 23z, + 223 + X3 ¢(x,) and
F' + x,%5 + yyz3 + yazy + ¥,2, if (To, o) = J 43
C - (P(xl) ll’(xl) + ‘//(xl) Xy + X3Zy + ZyX3 + X3V + VaYa + Yayy 4
+ Y3Vs + Vsy7 + ViVe + Y1 + Vi (P(X1) and
F =F 4+ x,x3 + 2191 + V2y7 + V3ve + yays if (To’ ro) = J3;
C = C, — (P(Xl) l//(xl) + lﬁ(xl) Xz + szl + Z1X3 + X3yl + Vi)s + Vi)Va -+
+ Va2 + V2Ve + Ve¥V7 + V7Vs + Vs ‘P(Xl) and
F =F + xx3 + 2191 + ¥2V7 + y3ye + yabs if (To, 1) € {3, Ju}s
C=C — o(x;) ¥{x;) + ¥(x1) x5 + X391 + y1ys + Yava + yox, + X2, +
+ 2,73 + 232, + z; ¢{x,) and
F =F + xp%3 + y123 + y225 + y3zy if (Ty, 1) = Js;
C=0C - q)(xx) Yixyg) + ‘//(xx) Xy + Xayp2 + Yay3z + Y3y + ViVs + Vsye +
+ VeVa + VaXs + X3Zy + 2323 + 232 + 2,25 + 2526 + ZZy +
+ 2z, ¢(x,) and
F =F + x3%3 + V1V6 + V2¥s + VaVa + 2126 + 2225 + 2324 if (T, 1) = J.
Obviously, C e #(T?), F € #(T*) and E(C) n E(F) = 0.

a ™
([

2.2 Let degy ro — degy, o < 2. Then (T, ro) & Dj;. Since [V(T,)| is odd, we
have degy r, — degr, 7o = 1. We denote

S=T-—w, —uy if (Ty, ro) € {Dy3y, D31}
S=T—wy —wy, —wy — uy if (Ty, ro) = Dyas;

S =T— ws — wy if (T, ro) € {Doasx> Doax> Dos} and
S=T—y, — .= Vp—2y — ... — 2, if (Ty, o) € 7.
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Since |V(S)| = 4 and |V(S)| is even, it follows from the induction assumption that
there exist C’' € #/(S?) and F’ € #(S*) such that E(C’) n E(F’) = 0. Since degy ro —
— degp, 1o = 1, S contains a terminal subtree isomorphic to Dy3 or Dysy.

2.2.1. Let (Ty. 7o) € {Dyars Das» Dysss Dossss Doass Doss J1s J2» J3 Jo}. Then S
contains a terminal subtree isomorphic to Dy;. Lemma 2 implies that:

if (To, 7o) € {Ds31> D3y Dyas)s there exist ie{l,2}, Ce #(S?) and Fe #(5%)
such that E(C) n E(F) < {ugu;, uu,} = E(C);

if (To, 7o) € { Dossss Doass Dos)» there exist ie (1,2}, Ce H#(S’) and Fe #(S*)
such that E(C) n E(F) < {ugw;, w,w,} = E(C);

if (Ty, ro) € {Jy, J2s T3, Ja}, there exist i € {2, 3}, Ce #/(S’) and F e #(S*) such
that E(C) n E(F) < {x,x;, x,x3} < E(C).
We define

C=C —ugu; — uguy + ugw; + wyu; + u,uy + usu, and

F = F + wyus if (Ty, ro) € {Dyays D31}

C=C — ugu; — ugty + ugWwz + wyw, + wow, + wyu; + uuy + uzu, and
F =F + uywy + wyws if (To, 7o) = Dys3;
C=C —uyw;, — wwy + ugws + wyw; + w,wy + waw, and
F = F + wyw, if (Ty, ro) € {Doasss Doass Doa};
C=0C—xX;— XoX3 + X V1 + YiVs + Yava + 0a2Xi + X227 + 2,2, +
+ z,z3 + z3x3 and
F=F + yz3 4 yy25 + y3z, if (T, 7o) = J o
C=C — x;X; — XoX3 + X1¥2 + YoVa + Ya¥s + ¥3¥s + Ys¥7 + Ya¥e +

+ Ye¥1 + y1Xi + Xpzy + zyx3 and
F=F 4 yzy + yay7 + ysVe + yays if (To, ro) € {J2, J3, Ju}.
Obviously, Ce #(T?), F e #(T*) and E(C) n E(F) = 0.
2.2.2. Let (Ty, ro) €{Js, Jg}. Then S contains a terminal subtree isomorphic
t0 Dy 4. It follows from Lemma 3 that there exist C e #(S*) and F e #(S*) such that
E(C) n E(F) © {x1x;, X,X3, X;x3} and [E C) N {x,x,, XX3, X;X3}| = 2.
Hence there exists i € {1, 2} such that x;x; € E C). We putj = 1 ifi = 2and j = 2
if i = 1. There exists k € {1, 2,3} — ¢} such that x,x, € E.C).
We define
c=C- X X3 — X;X + X3y + YViys + Yy, + VoX; + Xz + 2425 +
+ z3z, + z,x; and
F=F + yiz3 4 yy23 + y3zy if (To, 1) = Js;
Cc=C- XiX3 = X;Xp + X3Zp + Zpz23 + 232 + 2425 + Z5Zg + ZeZ4 t+
+ ZaX; + X+ ViVs + VaVa + Vaya + Yave + YeVs + Vsx; and
F=F + yys+ yays + ysya + 2126 + 2,25 + 2324 if (T, ro) = Js.
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Obviously, C e #(T?), F € #(T*) and E(C) n E(F) = 0.
Thus the proof of Lemma 4 is complete.
Theorem 1 immediately follows from Lemma 4.

References

[1] M. Behzad and G. Chartrand: Introduction to the Theory of Graphs. Allyn and Bacon,
Boston 1971.

[2] G. Chartrand, A. D. Polimeni and M. J. Stewart: The existence of 1-factors in line graphs,
squares, and total graphs. Indagationes Math. 35 (1973), 228—232.

[3] F. Harary: Graph Theory. Addison-Wesley, Reading, Mass. 1969.

[4] L. Nebesky: On the existence of a 3-factor in the fourth power of a graph. Cas. pést. mat. 105
(1980), 204 —207.

[5]1 L. Nebesky and E. Wisztovd: Regular factors in powers of graphs. Cas. pést. mat. 106
(1981), 52—59.

[6] L. Nebesky and E. Wisztova: Two edge-disjoint hamiltonian cycles of powers of a graph.
Submitted.

[7] M. Sekanina: On an ordering of the set of vertices of a connected graph. Publ. Sci. Univ.
Brno 412 (1960), 137—142.

[8] D. P. Sumner: Graphs with 1-factors. Proc. Amer. Math. Soc. 42 (1974), 8—12.

Author’s address: 010 88 Zilina, Marxa-Engelsa 25 (Vysoka $kola dopravy a spojov).

412



		webmaster@dml.cz
	2019-11-25T15:05:48+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




