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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

A NOTE ON PERVASIVE ALGEBRAS 

JAN CERYCH, Praha 

(Received February 13, 1984) 

By a function algebra (on a compact Hausdorff space X) we mean a closed sub-
algebra, separating the points of X, of the sup-norm algebra C(K) of all continuous 
complex-valued functions on X. 

A function algebra A is said to be pervasive provided it satisfies the following 
condition: 

Whenever F is a nonvoid proper closed subset of X, then AJF9 the algebra of all 
restrictions of the functions in A to the set F, is dense in C(F) (naturally with respect 
'to |*|F, the sup-norm on F). 

The notion "pervasiveness" is due to Hoffman and Singer [1] who also were the 
first to investigate the properties of such algebras. 

C(X) is of course a pervasive algebra. More interesting are its proper pervasive 
subalgebras; the simplest of them is the classical disc algebra, the set of all uniform 
limits of polynomials on the unit circle in the z-plane, and related algebras. 

Pervasiveness is a rather strong property, and it is interesting to seek for a non-
trivial additional property which guarantees the pervasive algebra to be equal to the 
whole C(X). In this sense we have investigated pervasive algebras in [2]. Our aim 
here is to strengthen the following Theorem A proved therein: 

Theorem A. Let A be a function algebra on X. Suppose that for any closed 
nonvoid proper subset F of X and for any function f in C(F) there exists a positive 
constant k(F,f) with the following property: 

Whenever e is a positive number, then there exists a g in A satisfying 

\f-g\P£e, \g\^k(F,f). 

Then A is equal to C(X). 
Remark that the assumption of Theorem A comprises the pervasiveness of the 

algebra A. 

In this note we shall require the pervasiveness of A, and the bounded approximation 
by functions in A solely of a single function on a certain set, and come to the same 
conclusion. More specifically, we shall prove the following. 
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Theorem B. Let A be a pervasive algebra on X. Let F and H be a disjoint couple 
of closed subsets of X which both have nonvoid interiors. Suppose that there is 
a constant c with the following property: 

Whenever e is positive, then there is an f in A satisfying 

(1) | / | F < * . \f-l\„<e, \f\<c. 

Then A is equal to C(X). 

Proof. Fix an arbitrary g in C(X) and e positive. To prove Theorem B, it suffices 
to find an h in A satisfying 

(2) \g-h\<e. 

It is obvious that X — F and X — H (where the bar denotes the closure in X) 
are closed nonvoid proper subsets of X. A being pervasive contains a couple j, k 
of functions satisfying 

(3) \g - J\T=~F < ~ , \g -• H^TI < 7* > 
4c 4c 

where c is the constant from (1). Remark that c is not less than 1. 
Without loss of generality we may assume that j and k are not both identically 

zero (in the opposite case the function h = 0 satisfies (2)) and put 

(4) "wm-
Take, with regard to (l), an fin A for which 

(5) \f\F<e, \f-l\H<e, \f\<c. 
The function 

h=fj + (l - / ) f c , 

satisfies (2). In fact, it is undeniable that 

F c X - H , H cX - F , X = FuHu(X-FnX-H), 

and, by (3), (4) and (5) 

\g-h\P = \g-fj-(í-f)k\p< 

<\g- k\P + \f\F[\j\P + \k\F) = 

= \9- k\x=ji + \f\ti\j\ + \k\) <~ + - <e, 
4c 2 

\a - h\H = \g-j+j-fj - (i -f)k\H < 

and finally 

= \g- J\—F + |i - f\n (|i| + |*|) < - + - < * , 
4c 2 

k - h\x=Fn^ = \g -fk-(l -f)k+fk- fj^nirnj = 
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= Ig - k\x=n + \f\- II ~ k\x=Tnir=Ti < 
e n .. i 11 \ e e 

< — + q|g - 7|x:7 + |g - klr-77) < ••-- + - < e . 
4c 4c 2 

Theorem B is proved. 

Remark. Evidently, the condition of pervasiveness for A may be omitted; it 
suffices to require an approximation of any continuous function on X — F and 
X — H by functions in A, and a norm-bounded approximation of the function which 
is equal to 0 on F and to 1 on H on the set F u H by functions in A. 

Problem. So far we have proved the following: 
Whenever A is a proper pervasive algebra (i.e., a pervasive algebra which is a proper 

subalgebra of C X)) and F, H are arbitrary disjoint closed proper fat (i.e., with 
interior points) subsets of X, then any approximation of the function 0 on F and 1 
on H is unbounded in the norm of A. 

Now we ask the following question: Is, in general, the assumption of F and H 
being fat necessary*! 

For the classical disc algebra mentioned above this is not the case: 
It is well-known that the disc algebra A is pervasive; it follows, for instance, from 

the famous Wermefs Maximality Theorem [3]; also it is well-known that any 
nontrivial analytic measure on C (i.e., a measure m on the unit circle C which an
nihilates A in the sense that ffdm = 0 for any f in A) and the Lebesgue measure 
on C are mutually absolutely continuous — this is the classical F. and M. Riesz 
Theorem. 

Let F and H be closed disjoint subsets of C having positive Lebesgue measures. 
Let {fn}„ be a sequence of functions in A which approximates 0 on F and 1 on H. 
Then [fn}„ is unbounded. 

Admit the boundedness of {fn} and fix an arbitrary nontrivial analytic measure m. 
Then the sequence {fnm}n is a norm-bounded sequence of analytic measures and 
has, in the weak-star topology, a limit point, say p. It is evident that 

pJF = 0 , pjH = mjH , 

where yjY denotes the restriction of the measure y to the set Y. However, p is analytic 
and F has a positive measure, hence p has to be trivial, and at the same time pjH 4= 0, 
which is a contradiction. 
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