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(Received May 25, 1985) 

The study of relationships between the behaviors of solutions of a given dif
ferential equation and those of its limiting equations is important and fruitful for 
discussing stability properties in nonautonomous systems. Many efforts devoted to 
this topics can be found in many references. For the references, see [ l ] , [3], [7], 
[8], [10]. For ordinary differential equations, many authors have shown that it is 
possible to deduce some stability properties in a given equation from analogous 
properties in its limiting equations (cf. [1], [3]). Recently D'Anna [3] has shown 
that the total stability of a bounded solution can be deduced from the total stability 
in a certain limiting equation which is obtained by employing the Bohr topology. 
This result is false when the limiting equations are obtained by using the compact 
open topology as is seen in [2]. The equation considered in [2] is 

ax" + bx' + ex = x sin <Jt, a > 0 , b > 0 , 0 < c < 1 , 

and for every pe [— 1, 1], ax" + bxf + ex = fix is a limiting equation under the 
compact open topology (cf. [10]). For — 1 <, \i < c, the null solution of the limiting 
equation is totally stable, but the null solution of the given equation is not so. 

In this article, we shall extend D'Anna's results to functional differential equations 
with infinite delay, where the arguments in ordinary differential equations can not 
be applied since the phase spaces are not locally compact. Let \x\ be any norm of x 
in R", and let B be a real linear vector space of functions mapping ( — oo, 0] into Rn 

with a semi-norm | • \B. If x is a function defined on (— oo, a), then for each t e (— oo, a) 
we define the function xt by the relation xt(s) = x(t + s), — oo < s ^ 0. The space B 
is assumed to have the following properties: 

(I) If x(t) is defined on (— oo, a) and is continuous on [a, a), cr < a, and if xa e J5, 
then for each t e [c, a), 

(i) xte B and xt is continuous in t with respect to | • \B, 
(ii) there exist a K > 0 and a nonnegative continuous function M(j8) such that 

M(j8) -> 0 as jg -* oo and 

|xf|B S K sup \x(s)\ + M(t - a) \xff\B , 
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(in) there exists a constant N > 0 such that \x(t)\ g JV|xr|fl. 

(II) The space of equivalent classes Bj\*\B is a separable Banach space. 
Typical examples of such phase spaces are the space Cy of </> such that eys0(s) is 

bounded and uniformly continuous on ( — 00, 0] with the norm |^| = sup {eys|0(s)|; 
5 ^ 0 } , where y > 0 is a constant, and the space My of measurable functions (j) with 
a finite norm |0 | = |0(O)| + J° « e"|0(s)| ds, 7 > 0 (cf. [4], [7]). 

Let S be a compact subset in B, and let a > 0, /? > 0 be constants. Denote by 
X(S, a, jS) the set {xt; t ^ 0, where *(•) is a function such that x0 e S9 \x(s)\ ^ a 
for s e [0, 00) and \x(st) — x(s2)\ ^ /?|si — s2 | f ° r 0 = si> s2 < °°}- Then it is 
known that the closure X(S9 a, 0) ofX(S, a, /?) is compact in B (Corollary 3.2 in [4]). 

We denote by C(I x B, Rn) the set of continuous functions defined on I x B 
with values in Rn, where I = [0, 00). A sequence {fk} in C(I x B, Rn) is said to con
verge to g Bohr-uniformly on 7 x Biffk converges to g uniformly onl x S for any 
compact set S in B as k -» 00. A function/\f, (/>) e C(I x B, Rn) is said to be positively 
precompact if for any sequence {tk} in / such that tk -> 00 as k -> 00, the sequence 
{f(t + tk9 (j))} contains a Bohr-uniformly convergent subsequence. Then, if f(t, <t>)e 
e C(I x B9 R

n) and f(t9 (/)) is positively precompact, f{t9 </>) is asymptotically almost 
periodic in t uniformly for 0 e B (cf. [11]). Also, i f / e C(I x B, Rn) is asymptotically 
almost periodic in t uniformly for (j> e B, f[t, (j>) is positively precompact. We denote 
by Q(f) the set of all limit functions g such that f(t + tk9 </>) converges to g Bohr-
uniformly for some sequence {tk} such that tk -» 00 as k -» 00. 

Now we shall consider the functional differential equation 

(1) x(t) = f(t, xt) , 

where f(t9 0) e C(I x B, Rn). We assume that 

(i) f(t9 0) is positively precompact, 

(ii) for any H > 0, there is an L(H) > 0 such that \f(t, <j>)\ S L(H) for all t ^ 0 
and (j) E B such that \<j)\B ^ if, 

(hi) equation (1) has a bounded solution u{t) defined on J such that \ut\B ^ c 
for all teL 

A system 

(2) x(0 = g(t9 xt) 

is called a limiting equation of (1) when g e Q{f). Under the above assumptions, 
it is clear that the closure of the set {ut; t ^ 0} is contained in the compact set 
X[{u0}, Nc, L[c)) and that g(t, (j)) is almost periodic in t uniformly for <f> e B if 
g e Q(f). We shall write (v, g) e Q(u,f) when there exists a sequence {tk}, tk -* 00 
as k -» 00, such that / ( t 4- **, $) -> g(t9 <j>) e £2(/) Bohr-uniformly and u(t + tk) -+ 
-* t;(r) uniformly on any compact set in L In this case, there exists a subsequence 
{xk} of {^} such that uXk -* weZ({w0}, ATc, L{c)) and w(r + tfc) -» t;(f) uniformly 
on any compact interval in I. Since \u(Tk) — w(0)| g N|uTk — w|B, w(0) = y(0). 
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Thus, if we let v0 = w, then vte B for all f ^ 0 and we have 

(3) |iil+tk - vt\B S K sup \u(s + rk) - t>(s)| + M(f) \uXk - t;0|B. 

Thus we can see that \ut+tk — vt\B -> 0 uniformly on any compact interval in / as 
k ~> oo. This implies that v(t) is a solution of (2). 

Definition. The bounded solution u(t) of (1) is said to be totally stable, if for any 
e > 0 there exists a 8(e) > 0 such that if s ^ 0, \us — i/r|B < 5(e) and h(t, <f>) is 
a continuous function which satisfies \h(t, $)| < 3(e) for f e [s, oo) and <£ such that 
\ut — $\B ^ e for f ^ s, then 

|u, - xf(s, ij/J + h)\B < e for l ^ s , 

where x(s, \j/, f -f A) is a solution through (s, ̂ ) of 

(4) x(t) = /"(*, x,) + /t(f, x,). 

Then we have the following equivalent definition. 

Lemma 1. The solution u(t)of (1) is totally stable, if and only if for any e > 0 
there exists a 8(e) > 0 such that if s *> 0, |ws — î |B < 5(e) and k(t) is a continuous 
function which satisfies \k(t)\ < 8(e) on [s, oo), then \ut — xt(s, ij/,f + k)\B < e 
for t ^ s, where x(s, *//,f + k) is a solution through (s, \j/) of 

(5) x(t)=f(t,xt) + k(t). 

Proof. The necessity is clear. Now consider a solution x through (s, \j/) of (4), 
where s ^ 0, \us — \j/\B < 8(e) and h(t, <j>) is a continuous function such that 
\h(t, 0)| < 8[s) for f e [s, oo) and 0 such that \ut — 0|B ^ e for f ^ s. Suppose 
that |MT — xt|B = e at some T > s and |u, — xr|B < e on s ^ t < T. Then x is a solu
tion of (4) defined on [s, T] and |/t(f, xr)| < 8(e) on s ^ ^ T. Thus there exists 
a continuous function k(t) on [s, oo) such that \k(t)\ < 8(e) for all t ^ s and k(t) = 
= /i(f, xr) on s ^ ^ T. Then x is also a solution defined on [s, T] of (5), and 
\us ~ *A|* < ^(e) and |fc(f)| < 8(e) for all t ^ s. Therefore |wt — xT|B < e, which 
contradicts \ux — xT|B = g. Thus we have |ur — x,|B < e for t ^ s. This shows that 
w(f) is totally stable. 

Remark 1. It is known that \ut — xr|B < e in the definition can be replaced by 
\u(t) - x(t)\ < e (cf. Theorem 6.1 in [4]). 

To prove our theorems, we use the following lemma which can be easily proved 
(cf. [5], [11]). 

Lemma 2. If the solution v(t) of (2), where (v, g) e Q(u,f), is totally stable, then 
it is asymptotically almost periodic in t. 
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Theorem 1. / / system (1) admits a limiting equation (2) whose solution v(t) such 
that (v, g) e Q(u,f) is totally stable, then u(t) is asymptotically almost periodic in t. 

Proof. Since (v, g)e Q(u,f), there exists a sequence {tk}, tk -> oo as k -> oo, 
such that u(t + tk) -» v[t) uniformly on any compact interval in J and/(f + tk, 4>) -> 
-» g(t, 4>) uniformly for (t, 4>) el x X0 as k -• oo, where X0 = X({u0}, Nc, L(c)). 
For any e > 0, there is a fe0(e) > 0 such that if k ^ fc0(e), taking a subsequence if 
necessary, we have 

K - ^O|B < 5(e/2) and |/(f + fk, 0) - $(*, <£)| < <5(e/2) on J x X0 , 

where £(•) is the number for the total stability of v[t). For k ^ k0(s), u{t + tk) is 
a solution of 

*(') = g(t, xt) + / ( ' + h, ut+tk) - #(*, ut+tk) , 

K - "o|a < 5(«/2) and |/(* + tk, ut+tk) - g(t, ut+tk)\ < <5(e/2) for t £ 0. Since 
v{i) is totally stable, we have 

(6) |M(* + tk) - v(t)\ < e/2 for all * ̂  0 

if k ^ fe0(e). 
Now let {hk} be any sequence such that hk -> oo as fc -• oo. Choose a subsequence 

{/zfc} of {/î } such that 2tk < hk and set hk = tk + sk. Then sk -> oo as k -» oo, because 
sfc > rfc. Since t;(f) is asymptotically almost periodic by Lemma 2, there exists a sub
sequence {skj} of Is*} and a function w(f) such that 

v(t + sky) -> w(f) uniformly on / as j -• oo , 

and hence there is a70(e) > 0 such that if 7 ^ Jo(e)> t n e n 

(7) \v(t + s*,) - w(f)| < e/2 for all f ^ 0 . 

It follows from (6) and (7) that if j is greater than some positive integer ji(s), then 
\u{t + /zfcj) — w[t)\ < s for all t ^ 0, since we have 

\u(t + hkj) - w(t)\ ^ \u(t + tkj + skj) - v(t + skj)\ + \v[t + skj) - w(t)\ . 

This shows that u(i) is asymptotically almost periodic in t. 
The following lemma holds for a more general case where C(I x B, Rn) is a space 

with the compact open topology. In this case, the convergence of a sequence {fk} 
in C(I x B, Rn) means that fk converges uniformly on any compact set i n / x B 
as k -> 00. Moreover, Q{f) is the set of all limit functions g such that f{t + tk, <j>) 
converges to g uniformly on any compact set ml x B for some sequence {tk} such 
that tk -> 00 as k -+ 00. 

Lemma 3.LetC(I x B, Rn) be the space of continuous functions defined on I x B 
with values in Rn, with the compact open topology. Assume that f in system (1) is in 
C(I x B, Rn). If the bounded solution u{i) of\l) is totally stable, then for any (v, g) e 
e 0 , M , / ) , v is totally stable with a common pair (e, <5*(e)). 
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Proof. Let y be a solution of 

x(t) = g(t9 xt) + h(t) 

through (s, ys), where s ^ 0, (v, g) e Q(u,f) and h(t) is a continuous function on 
[s, oo), and assume that 

h - ^IB < W / 2 and KOI < W)/ 2 on b> °°)> 
where <!>(•) is the number for the total stability of u(t). Suppose that for some T > 0, 

K + r ~ ys + x\B = 8 a n d \Vt ~ yt\B < 8 for 5 g f < S + T . 

Since (v, g)e Q(u,f), there exists a sequence {^}, tk-+ oo as fc-* oo, such that 
w(* + *jt) "^ KO uniformly on any compact interval in J and f(t + tk9 0) -> #(f, (/>) 
uniformly on any compact set in I x B as k -> oo. Therefore there is a k0 = 
= fc0(

e> j ) > 0 such that 

h + f f - VS\B < Ksl2)l2 a n d | / ( r + °>4>)- G(*> 4>)\ < s^l2)l2 °n 
[s, s + T] x {X0 u Z^} , 

where a = ffcii, Z 0 = A\{wo}> Nc, Z/c)) and Xy = X({ys}, N(c + e), L{c + e) + e). 
Thus there are continuous functions p(f) and #(*) defined on [5, 00) such that \p{t)\ < 
< 3(8/2), | ,(r)| < 5(6/2), 

p(f) = #(*, t;,) - /(f + (J, vt) on [s, s + T] 

and 

q(t) = g{t, yt) - f(t + <r, yt) + h(t) on [s, s + T] . 

Then i?(f) is a solution of 

x(t) = / (* + (7, x,) + p(f) 

on [s, 5 4- T], and y(t) is a solution of 

x(t) = f(t + <x, xt) + g(f) 

on [s, s + T] . On the other hand, it is clear that u(t + a) is a solution of 

*(0 = /(* + <r> xt) 

and u(f + a) is totally stable with the same <5(*) as for u(t). Since |ws+rf — vs\B < 
< d(ej2) and |p(f)| < S(ej2), the total stability of u{t + a) implies 

(8) \ut+ff ~ vt\B < e/2 for s <; t <; s + T . 

Moreover, \q(t)\ < <5(e/2) and |us+0, - 3 ^ g \us+<r - vs\B + |i?s - ys\B < 5(e/2), 
and hence we have 

(9) |u,+(f - yt\B < e/2 for s <> t ^ s + T . 

Thus it follows from (8) and (9) that \vs+x — ys+r\B < e, which contradicts 
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\vs+x — JS+T|B = e- This shows that v(t) is totally stable with (e, <5*(e)), where <5*(e) = 

= ^(«/2)/2. 

Lemma 4. Under the assumptions of Theorem 1, /or any (w, p) e Q(u,f), w(t) 
is totally stable with a common pair (e, d*(e)). 

Proof. By Theorem 1 and Lemma 2, u(i) and i;(f) are asymptotically almost 
periodic in t, and hence Q(u9f) = D(i?, g) since/(f, (/>) also is asymptotically almost 
periodic. Thus, for any (w, p) e £2(w, / ) = Q(v, g)9 w(t) is totally stable with a common 
pair (e, (5*(e)) which follows by applying Lemma 3 to (y, g) since v(t) is totally stable. 

Now we are ready to prove the following theorem which is a generalization of 
a result obtained by D'Anna [3]. 

Theorem 2. Assume that the bounded solution u{t) of (1) is the unique solution 
through (0, u0). If system (1) admits a limiting equation (2) whose solution v(t) 
such that (v, g) e Q(u,f) is totally stable, then u(t) is totally stable. 

Proof. First of all, we shall show that u(i) is eventually totally stable, that is, for 
any, £ > 0 there exist a(e) ^ 0 and <5(e) > 0 such that if s ^ a(e), \us — \p\B < 3(e) 
and h(t) is a continuous function which satisfies \h(t)\ < 5(e) on [s, oo), then 

\ut — xt (s9\j/9f + h)\B < s for t ^ 5, 

where x(s, \j/,f+ h) is a solution through (5, ^) of JC(^) = f(t9 xt) + /i(r). 
Suppose that w(f) is not eventually totally stable. Then there exist an e > 0 and 

sequences {tk}, {rk}9 {hk(t)}, {xk(t)} such that tk > k9 rk > tk9 \xk
tk - utk\B < 1/fe, 

\hk(t)\ < 1/fc on \tk9 00), \xk
k - urk\B = e and \xk - ut\B < e on \tk9 rk)9 where 

/i*(f) is a continuous function and xk(t) is a solution through (tk9 xjfc) of 

*(*) = f(t, xt) + h\t) . 

Then there is an sk, tk < sk < rk9 such that 

K - « J B = *"(e/2)/2 and |xj - ut\B < 6*(ej2)j2 on [tk, sk), 

where <?*(•) is the number given in Lemma 4. Taking a subsequence if necessary, 
we can assume that u(t + sk) -> w(t) uniformly on / and f(t + sk9 (p) -+ p(t9 (p) 
uniformly on I x X0 as k -• 00, where X0 = X({w0} u CI {xjjj, N(c + e), 
£(c + s) + 1), since sfc -> 00 as fc -> 00 and w(f) is asymptotically almost periodic 
by Theorem 1. Moreover, we can assume that wte B for allt ^ 0 and \ut+Sk — wt\B -• 
-> 0 uniformly on / as k -» 00, because u(t + 5fc) -» w(?) uniformly on J and 
sup M(j8) < 00 in (3). Thus (w, p) e Q(u,f). Then there exists a /c0(e) > 0 such that 

if fc ^ fc0(e), then 
\ut+,k ~ wt\B < <S*(e/2)/2 for all * ^ 0 

and 
\f(t + sk9 (P) + hk(t + sk) - p(r, 0)| < <5*(e/2) on I x X 0 . 
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On the other hand, x\t + sk) is a solution defined on [0, rk — s&] of 

x(t) = p(t9 xt) + fyt 4- sk, x
k
t+J + h\t + sk) - p(t9 xk

t+Sk) 

and 

| < - W0|B ^ | < - " J B + K - W0|B < S*(el2) if fc £ fc0(e) . 

Therefore we have 

K - wrk-Sk|B<e/2, 

because w(f) is a totally stable solution of x(t) = p(t, xt) with <5*(*) by Lemma 4. 
However, we have 

| < - « J B ^ | < - vvrk_Sk|B + |wrk_Sk - WrJB < e/2 + c5*(£/2)/2 < s , 

which contradicts \xk
fk — urk\B = e. 

This shows that u(t) is eventually totally stable. Since u(t) is unique for the initial 
condition, the continuous dependence on initial conditions implies the total stability 
of u(t). 

Under the regularity condition on system (l), we have a result for uniform 
asymptotic stability. We say that system (1) is regular if the solutions of every limiting 
equation of (l) are unique for the initial value problem. 

The following lemma can be found in [6], [9]. 

Lemma 5. //* the bounded solution u(i) of {!) is unique for the initial condition 
and if any w such that (w, p)e Q(u9f) is uniformly asymptotically stable with 
a common (S09 <5(*), T( ,))J then u(t) is uniformly asymptotically stable and is also 
totally stable. 

Theorem 3. Assume that the bounded solution u{i) of (1) is the unique solution 
through (0, w0). / / system (1) is regular and admits a limiting equation (2) whose 
solution v[t) such that (v, g) e Q(u9f) is uniformly asymptotically stable, then u{t) 
is uniformly asymptotically stable. 

Proof. Since system (1) is regular and v(t) is uniformly asymptotically stable, 
any w(t) such that(w, p) e Q(v9 g) is uniformly asymptotically stable with a common 
(<50, 5[')9 7\*)) by Proposition 1 in [6]. Therefore, by applying Lemma 5 to (v9 g), 
v(t) is totally stable, and hence u(t) is asymptotically almost peroidic in t by Theorem 
1. Since Q(u9f) = Q(v, g)9 we have the conclusion by applying Lemma 5 again. 

Remark 2. As was shown in [9], if system (1) is regular or periodic and if the 
bounded solution u(t) is uniformly asymptotically stable, then u{i) is asymptotically 
stable under M perturbations, that is, for any s > 0 there exists a d(e) > 0 such that 
if s ^ 0, \us — \j/\B < 5(e) and sup JJ+1 \h(s)\ ds < <5(e),then \ut — xt(s9 \j/9f + h)\B < 

< s for all t g: s, and moreover, there exists a 50 > 0 and for any r\ > 0 there exist 
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y(rj) > 0 and T(t]) ̂  0 such that \ut - xt(s, \jt9f + h)\B < rj for all t ^ s + T(t]) 
whenever \us — \j/\B < d0 at some s ^ 0 and sup J[+1 \h(s)\ ds < y(rj), where 

x(s, \j/, f + /*) is a solution through (s, ^) of 

*(f) = / ( * , xf) + *(r) . 

Therefore Theorem 3 is a generalization of Theorem 3.2 in [3]. 
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