Časopis pro pěstování matematiky

František Neuman

Covariant constructions in the theory of linear differential equations

Časopis pro pěstování matematiky, Vol. 111 (1986), No. 2, 201--207
Persistent URL: http://dml.cz/dmlcz/118277

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

COVARIANT CONSTRUCTIONS IN THE THEORY OF LINEAR DIFFERENTIAL EQUATIONS

František Neuman, Brno
Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday

(Received April 26, 1985)

Consider a linear differential homogeneous equation of the n-th order, $n \geqq 2$, of the form

$$
\begin{equation*}
y^{(n)}+p_{n-2}(x) y^{(n-2)}+p_{n-3}(x) y^{(n-3)}+\ldots+p_{0}(x) y=0 \quad \text { on } \quad I, \tag{1}
\end{equation*}
$$

or simply $P_{n}(y, x ; I)=0$, where $I \subset \mathbb{R}$ is an open interval and $p_{i} \in C^{0}(I), i=1, \ldots$ $\ldots, n-2$, are real functions. Moreover, we shall suppose $p_{n-2} \in C^{n-2}(I)$. For a fixed integer $n, n \geqq 2$, let D_{n} denote the set of all n-th order linear differential equations of the type (1).

It is known [7] that the most general pointwise transformation that globally transforms all solutions of each equation $P_{n}(y, x ; I)=0$ from D_{n} into all solutions of an equation $Q_{n}(z, t ; J)=0$ from D_{n}, i.e., into

$$
z^{(n)}+q_{n-2}(t) z^{(n-2)}+q_{n-3}(t) z^{(n-3)}+\ldots+q_{0}(t) z=0 \quad \text { on } \quad J,
$$

is

$$
\begin{equation*}
\left.z(t)=c|\mathrm{~d} h(t) / \mathrm{d} t|^{(1-n) / 2} y^{\prime} h(t)\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
h \in C^{n+1}(J), \quad \mathrm{d} h(t) / \mathrm{d} t \neq 0 \text { on } J, \quad h(J)=I \tag{3}
\end{equation*}
$$

and $c \neq 0$ is a real constant.
To express that an equation $P_{n}(y, x ; I)=0$ is globally transformed into $Q_{n}(z, t ; J)=0$ in the sense of the relation (2), we shall simply write $h\left(P_{n}\right)=Q_{n}$.

Denote by A the set of all real functions $f: \mathbb{P} \rightarrow \mathbb{R}$ being expressible in a power series (centred at zero) that converges on the whole \mathbb{R}. Let $A D_{n}$ denote all differential equations from D_{n} whose coefficients are in A.

We shall consider mappings F_{n} of $A D_{2}$ into $A D_{n}$ constructed in the following way: for each integer $n, n \geqq 2$, there are n functions
$F_{n i}: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}, i=1, \ldots, n$, such that for each couple of linearly independent solutions u_{1}, u_{2} of an equation from $A D_{2}$,

$$
\begin{equation*}
u^{\prime \prime}+p(x) u=0, \quad p \in A \tag{p}
\end{equation*}
$$

the n functions $x \mapsto F_{n i}\left(u_{1}(x), u_{2}(x)\right), x \in \mathbb{R}$, form an n-tuple of linearly independent solutions of an equation from $A D_{n}$. Moreover, we require this n-th order equation from $A D_{n}$ to depend only on the original equation (p) and not on the choice of its solutions u_{1} and u_{2}. The n-th order equation from $A D_{n}$ constructed in this way will be denoted by $F_{n}(p)$.

The aim of this paper is to study the mappings, or constructions F_{n} satisfying

$$
\begin{equation*}
F_{n} h(p)=h F_{n}(p) \tag{4}
\end{equation*}
$$

for all $p \in A$ and each h whenever $h(p)$ is defined.
We shall prove that the commutativity condition (4) characterizes the construction F_{n}, and $F_{n}(p)$ is the so-called iterative equation to (p). It occurs that this F_{n} is the only construction covariant with respect to transformations.

The category of linear differential equations as objects and their global transformations as morphisms was introduced in [6]. For covariant functors in the theory of categories, see e.g. [5].

Theorem. Let n be a fixed integer, $n \geqq 2$, and let $F_{n}: A D_{2} \rightarrow A D_{n}$ be a mapping satisfying (4). Then F_{n} is uniquely determined and is described by the following construction.

If u_{1} and u_{2} denote two linearly independent solutions of (p), then

$$
\begin{equation*}
\left.y_{i}^{\prime} x\right)=u_{1}^{n-i}(x) \cdot u_{2}^{i-1}(x), \quad i=1, \ldots, n, \tag{5}
\end{equation*}
$$

are n linearly independent solutions of the equation $F_{n}(p) \in A D_{n}$. The equation $F_{n}(p)$ is well-defined, i.e., it does not depend on the particular choice of solutions u_{1} and u_{2} of (p).

Moreover, the mapping F_{n} given by (5) can be extended to \widetilde{F}_{n} defined on the subset of the second order equations from D_{2} with coefficients of class $C^{n-2}(I), I \subset \mathbb{R}$, and this extension is an injection to D_{n}.

Proof. Consider an equation $(p), p \in A$, and its linearly independent solutions u_{1} and u_{2}. Evidently $u_{1} \in A, u_{2} \in A$, and the Wroński determinant $\mathrm{W}\left(u_{1}, u_{2}\right)=k=$ $=$ const. $\neq 0$. Choose arbitrary $h \in A$ satisfying (3) for $I=J=\mathbb{R}$. Denote by $(q):=h(p)$ the equation obtained from equation (p) by means of the transformation h, i.e.

$$
\begin{equation*}
v^{\prime \prime}+q(t) v=0, \quad q \in A \tag{q}
\end{equation*}
$$

Due to (2), see also [2, Chap. 11] or [4, Chap. 7],

$$
v_{i}(t)=|\mathrm{d} h(t) / \mathrm{d} t|^{-1 / 2} u_{i}(h(t)) ; \quad i=1,2 ; \quad t \in \mathbb{R}
$$

are two linearly independent solutions of (q).

Let a mapping F_{n} satisfy the assumptions of the theorem. Consider the linear differential equations of the n-th order,

$$
F_{n}(p) \text { and } F_{n}(q)
$$

Hence $y_{i}(x)=F_{n i}\left(u_{1}(x), u_{2}(x)\right), i=1, \ldots, n$, are linearly independent solutions of $F_{n}(p)$. Due to (4), $h F_{n}(p)$ is defined because $h(p)=(q)$ exists. In fact, the same change $x \mapsto h(t)$ occurs in both of the transformations of the equation (p) to (q) and the equation $F_{n}(p)$ to $F_{n}(q)$, since the mapping F_{n} is a pointwise transformation and the independent variable, x, is not changed when mapping (p) to $F_{n}(p)$. The equation $h F_{n}(p)$ coincides with the equation $F_{n}(q)$, as follows from (4). Moreover, due to (2),

$$
z_{i}(t):=|\mathrm{d} h(t) / \mathrm{d} t|^{(1-n) / 2} y_{i}(h(t)), \quad i=1, \ldots, n,
$$

are linearly independent solutions of $F_{n}(q)$.
At the same time, $F_{n}(q)$ is $F_{n}(h(p))$, i.e.,

$$
\left.F_{n i}\left(v_{1}(t), v_{2}(t)\right)=\left.F_{n i}| | h^{\prime}(t)\right|^{-1 / 2} u_{1}(h(t)),\left|h^{\prime}(t)\right|^{-1 / 2} u_{2}(h(t))\right), \quad i=1, \ldots, n,
$$

are n linearly independent solutions of $F_{n}(q)$. Hence

$$
\begin{aligned}
& \left(\begin{array}{c}
z_{1}(t) \\
\cdots \\
z_{n}(t)
\end{array}\right)=|\mathrm{d} h(t) / \mathrm{d} t|^{(1-n) / 2} \cdot\left(\begin{array}{c}
F_{n 1}\left(u_{1}(h(t)), u_{2}(h(t))\right) \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
F_{n n}\left(u_{1}(h(t)), u_{2}(h(t))\right)
\end{array}\right)= \\
= & C \cdot\left(\begin{array}{l}
F_{n 1}\left(|\mathrm{~d} h(t) / \mathrm{d} t|^{-1 / 2} u_{1}(h(t)),|\mathrm{d} h(t) / \mathrm{d} t|^{-1 / 2} u_{2}(h(t))\right) \\
\ldots \\
F_{n n}\left(|\mathrm{~d} h(t) / \mathrm{d} t|^{-1 / 2} u_{1}(h(t)),|\mathrm{d} h(t) / \mathrm{d} t|^{-1 / 2} u_{2}(h(t))\right)
\end{array}\right)
\end{aligned}
$$

for a unique nonsingular constant n by n matrix C. Since $(p), u_{1}, u_{2}$, and $h\left(h^{\prime} \neq 0\right.$, $u_{1}^{2}+u_{2}^{2}>0$) were arbitrarily chosen, the last relation for $|\mathrm{d} h(t) / \mathrm{d} t|^{-1 / 2}=: a$, $u_{1}(h(t))=: r$, and $u_{2}(h(t))=: s$ reads

$$
\boldsymbol{C} \cdot\left(\begin{array}{c}
F_{n 1}(a r, a s) \\
\ldots \ldots \ldots \\
F_{n n}(a r, a s)
\end{array}\right)=a^{n-1}\left(\begin{array}{c}
F_{n 1}(r, s) \\
\ldots \ldots . \\
F_{n n}(r, s)
\end{array}\right)
$$

for $F_{n i}: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}$ and all $a>0$. By specifying $a:=1$ we get

$$
\boldsymbol{C} \cdot\left(\begin{array}{c}
F_{n 1}(r, s) \\
\ldots \ldots . \\
F_{n n}(r, s)
\end{array}\right)=\left(\begin{array}{c}
F_{n 1}(r, s) \\
\ldots \ldots . . \\
F_{n n}(r, s)
\end{array}\right) .
$$

The last relation is satisfied for the unit matrix I instead of C. Due to the uniqueness of $C, C=I$. We have

$$
\begin{equation*}
F_{n i}(a r, a s)=a^{n-1} F_{n i}(r, s), \quad i=1, \ldots, n, \tag{6}
\end{equation*}
$$

i.e., each $F_{n i}$ is a homogeneous function in two variables of the order $n-1$. Following the method of "specification of variables", see J. Aczél [1], put $a:=1 / r$ for $r>0$. Then

$$
\begin{align*}
& F_{n i}(1, s / r)=r^{1-n} F_{n i}(r, s) \text { or } \tag{7}\\
& F_{n i}(r, s)=r^{n-1} F_{n i}(1, s / r)=r^{n-1} G_{n i}(s / r), \quad r>0,
\end{align*}
$$

where $G_{n i}: \mathbb{R} \rightarrow \mathbb{R}$ are defined on the whole \mathbb{R}.
For a moment, let $p \equiv 0$ on \mathbb{R} in (p). Chose $u_{1}(x)=1$ and $u_{2}(x)=x$ for $x \in \mathbb{R}$. Evidently $p, u_{1}, u_{2} \in A$. Since $F_{n}(p) \in A D_{n}$, we have

$$
F_{n i}(1, x) \in A \quad \text { for } \quad i=1, \ldots, n
$$

Thus

$$
G_{n i}(x)=F_{n i}(1, x) \in A,
$$

or

$$
\begin{equation*}
G_{n i}(x)=a_{n i 0}+a_{n i 1} x+a_{n i 2} x^{2}+\ldots=\sum_{j=0}^{\infty} a_{n i j} x^{j} \tag{8}
\end{equation*}
$$

where

$$
\underset{j \rightarrow \infty}{\limsup }\left|a_{n i j}\right|^{1 / j}=0 .
$$

For the same equation (p), i.e. with $p \equiv 0$ on \mathbb{R}, change the order of its solutions u_{1}, u_{2}. Again $\left.F_{n i}{ }^{\prime} x, 1\right), i=1, \ldots, n$, are linearly independent solutions of the equation $F_{n}(p)$ from $A D_{n}$, and hence

$$
F_{n i}(x, 1) \in A, \quad i=1, \ldots, n .
$$

We have

$$
\begin{equation*}
F_{n i}(x, 1)=\sum_{j=0}^{\infty} b_{n i j} x^{j} \tag{9}
\end{equation*}
$$

with $\limsup _{j \rightarrow \infty}\left|b_{n i j}\right|^{1 / J}=0$.
Due to (7), we can write

$$
F_{n i}(x, 1)=x^{n-1} G_{n i}(1 / x) \text { for } x>0
$$

or, by comparing (8) and (9),

$$
\begin{equation*}
\sum_{j=0}^{\infty} b_{n i j} x^{j}=x^{n-1} \sum_{j=0}^{\infty} a_{n i j} x^{-j} \text { on } \mathbb{R}_{+} . \tag{10}
\end{equation*}
$$

Define

$$
\begin{gathered}
H(x):=\sum_{v=1}^{\infty} a_{n i, v+n-1} x^{-v}-\sum_{v=n}^{\infty} b_{n i v} v^{v}+\left(a_{n i, n-1}-b_{n i 0}\right)+ \\
+\left(a_{n i, n-2}-b_{n i 1}\right) x+\ldots+\left(a_{n i 1}-b_{n i, n-2}\right) x^{n-2}+\left(a_{n i 0}-b_{n i, n-1}\right) x^{n-1} .
\end{gathered}
$$

From (10) we have $H(x)=0$ for all $x \in \mathbb{R}_{+}$. Due to the conditions on $a_{n i j}$ and $b_{n i j}$ in the relations (8) and (9), the complex function $H(z)$ of the complex
variable z vanishes on \mathbb{C}. Hence all coefficients in the expansion of $H(z)$ must be zeros.

From (8) we get

$$
G_{n i}(x)=a_{n i 0}+a_{n i 1} x+\ldots+a_{n i, n-1} x^{n-1} \text { on } \mathbb{R}
$$

and due to (7),

$$
F_{n i}(r, s)=\sum_{j=1}^{n} a_{n i, j-1} r^{n-j_{S}-1} \quad \text { on } \quad \mathbb{R}^{2}-\{0,0\}, \quad i=1, \ldots, n
$$

These $F_{n i}\left(u_{1}(x), u_{2}(x)\right), i=1, \ldots, n$, should be linearly independent. On the other hand, another linear combination with constant coefficients giving n linearly independent functions determines the same linear differential equation. Hence we may choose

$$
F_{n i}(r, s)=r^{n-i} s^{i-1}, \quad i=1, \ldots, n
$$

if we show that
(i) $u_{1}^{n-i}(x) u_{2}^{i-1}(x), i=1, \ldots, n$, are of class A with nonvanishing Wroński determinant on \mathbb{R},
(ii) the n-th order linear differential equation having these n functions as solutions is of class $A D_{n}$,
(iii) the differential equation is the same if another pair of solutions of the equation (p) is taken.
Since $u_{1}, u_{2} \in A$, we have $u_{1}^{n-i} u_{2}^{i-1} \in A$ for $i=1, \ldots, n$. In view of $u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2}=$ $=k=$ const. $\neq 0$, we have the Wroński determinant

$$
\begin{aligned}
& W\left(u_{1}^{n-1}, u_{1}^{n-2} u_{2}, \ldots, u_{2}^{n-1}\right)= \\
& =W\left(u_{1}^{n-1} 1, u_{1}^{n-1}\left(u_{2} / u_{1}\right), \ldots, u_{1}^{n-1}\left(u_{2} / u_{1}\right)^{n-1}\right)= \\
& =\left(u_{1}^{n-1}\right)^{n}\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\left(u_{2} / u_{1}\right)\right)^{n(n-1) / 2} W\left(1, x, \ldots, x^{n-1}\right)= \\
& =u_{1}^{n(n-1)}\left(\left(u_{2}^{\prime} u_{1}-u_{2} u_{1}^{\prime}\right) u_{1}^{-2}\right)^{n(n-1) / 2} 0!1!\ldots(n-1)!= \\
& =K=\text { constant } \neq 0, \text { except at isolated zeros of the solution } u_{1} .
\end{aligned}
$$

However, this Wroński determinant is at least of class $C^{1}(\mathbb{R})$, hence it is a nonzero constant on \mathbb{R}, and the condition (i) is verified.

Due to the fact that the Wronski determinant is a constant, the property (i) implies (ii).

For each $i \in 1, \ldots, n$ and constants $c_{11}, c_{12}, c_{21}, c_{22}$ such that $c_{11} c_{22}-c_{12} c_{21} \neq 0$, we have

$$
\left(c_{11} u_{1}+c_{12} u_{2}\right)^{n-i}\left(c_{21} u_{1}+c_{22} u_{2}\right)^{i-1}=\sum_{j=1}^{n} d_{j} u_{1}^{n-j} u_{2}^{j-1}
$$

where d_{j} are suitable constants. Hence the property (iii) is also established.
It remains to show that the construction F_{n} can be extended from $A D_{2}$ onto the second order equations from D_{2},

$$
\begin{equation*}
u^{\prime \prime}+\tilde{p}(x) u=0 \tag{p}
\end{equation*}
$$

where $\tilde{p} \in C^{n-2}(I), I \subset \mathbb{R}$. This subset of equations (\tilde{p}) from D_{2} will be denoted by \tilde{D}_{2}.

In fact, since $\tilde{p} \in C^{n-2}(I)$, we have $u_{1} \in C^{n}(I)$ and $u_{2} \in C^{n}(I)$ for each pair of linearly independent solutions u_{1} and u_{2} of (\tilde{p}). All steps of introducing the mapping F_{n} have required derivatives at most of the order n. Hence we may define in the same manner the equation

$$
\tilde{F}_{n}(\tilde{p})
$$

as the unique n-th order linear differential equation having the n functions $u_{1}^{n-i} \cdot u_{2}^{i-1}$ as its solutions. The coefficients of the equation $\widetilde{F}_{n}(\tilde{p})$ are continuous, the coefficient of the $(n-1)$-st derivative is zero because the Wroński determinant of the solutions is a nonzero constant, and the coefficient of the ($n-2$)-nd derivative is of class $C^{n-2}(I)$ if the leading coefficient is 1 , because solutions are of class $C^{n}(I)$. Hence $\widetilde{F}_{n}: \widetilde{D}_{2} \rightarrow D_{n}$. Denote $\widetilde{D}_{n}:=\widetilde{F}_{n}\left(\widetilde{D}_{2}\right)$.

In fact, the equation $\widetilde{F}_{n}(\tilde{p})$ coincides with the so-called iterative equation generated by \tilde{p}, and it can be written in the form

$$
\widetilde{F}_{n}(\tilde{p})=y^{(n)}+\binom{n+1}{3} \tilde{p}(x) y^{(n-2)}+2\binom{n+1}{4} \tilde{p}^{\prime}(x) y^{(n-3)}+\ldots=0
$$

see, e.g. [3]. We can see that for different ($\tilde{p})$ we get different $\widetilde{F}_{n}(\tilde{p})$, hence \widetilde{F}_{n} is an injection. Q.E.D.

CONCLUSION

We have proved that a special construction of iterative equations is unique and in this sense natural, if the commutativity of constructions with transformations and a regularity condition are required.

Due to the injectivity of the mapping \tilde{F}_{n}, we can complete the relation (4) to

$$
\tilde{F}_{n} h(\tilde{p})=h \tilde{F}_{n}(\tilde{p}) \text { and } h \tilde{F}_{n}^{-1}\left(\tilde{P}_{n}\right)=\tilde{F}_{n}^{-1} h\left(\widetilde{P}_{n}\right)
$$

for all $\tilde{p} \in \widetilde{D}_{2}$ and $\widetilde{P}_{n} \in \widetilde{D}_{n}$ whenever h is defined.
Remark. In the proof of the theorem the regularity assumption on F_{n} was used only to establish that F_{n} maps the equation $u^{\prime \prime}=0$ on \mathbb{R} to an equation from $A D_{n}$. Hence the assertion of the theorem remains true if its assumption is weakened in this sense.

Corollary. The mapping F_{n} is a covariant functor from the category $A D_{2}$ to the category $A D_{n}$.

Indeed, one can check that

$$
h(p)=(p) \text { implies } \quad h F_{n}(p)=F_{n}(p),
$$

and

$$
h k(p)=(q) \text { implies } \quad h k F_{n}(p)=F_{n}(q),
$$

because

$$
\left|(h k)^{\prime}\right|^{(1-n) / 2} y(h k)=\left|k^{\prime}\right|^{(1-n) / 2}\left(\left|h^{\prime}\right|^{(1-n) / 2} y(h)\right)(k) .
$$

References

[1] J. Aczél: Lectures on Functional Equations and their Applications. Academic Press, New York and London, 1966.
[2] O. Borüvka: Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971.
[3] Z. Hustý: Die Iteration homogener linearer Differentialgleichungen. Publ. Fac. Sci. Univ. J. E. Purkyně (Brno) 449 (1964), 23-56.
[4] J. Kurzweil: Ordinary Differential Equations in the Real Domain. SNTL Praha \& Elsevier. Amsterdam, 1986.
[5] Ch Maxwell: Coincidences of mappings. Global Analysis-Analysis on Manifolds, edited by T. M. Rassias, Teubner-Texte zur Mathematik, Leipzig 1983.
[6] F. Neuman: Categorial approach to global transformations of the n-th order linear differential equations. Čas. pěst. mat. 102 (1977), 350-355.
[7] F. Neuman: Criterion of global equivalence of linear differential equations. Proc. Roy. Soc. Edinburgh 97A (1984), 217-221.

Author's address: 60300 Brno, Mendelovo nám. 1 (Matematický ústav ČSAV).

