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112(1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 1.80—88 

GREATEST COMMON SUBGRAPHS OF GRAPHS 

GARY CHARTRAND1), FORROKH SABA, HUNG-BIN ZOU, Kalamazoo 
(Received August 1, 1984) 

Summary. A -graph G without isolated vertices is a greatest common subgraph of a set 0 of 
graphs, all having the same size, if G is a graph of maximum size that is isomorphic to some sub
graph of every graph in 3?. A number of results concerning greatest common subgraphs are 
presented. In particular, it is shown that for integers m ^ 3 and n ^ 1, there exists a set of m 
graphs of equal size having exactly n greatest common subgraphs. Furthermore, it is shown that 
for any graph G without isolated vertices, there exist graphs Gt and G2 of equal size having G 
as their unique common subgraph. A further investigation of this result gives rise to a parameter, 
called the greatest common subgraph index of a graph. 

1. INTRODUCTION 

In [2] the authors introduced the concept of a greatest common subgraph of two 
graphs Gj and G2 of the same size (having the same number of edges) for the purpose 
of studying a distance between Gx and G2. This concept can be generalized as follows: 

"r 

ъ 

Figure 1 

Given a set 0 -= \GU G2,..., Gn}, n ^ 2, of graphs, all of the same size, a greatest 
common subgraph of ^ is a graph of maximum size and without isolated vertices 
that is isomorphic to some subgraph of every graph in ^. The set of all greatest 
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common subgraphs of ^ is denoted by 

gcs^ = gcs(G1,G2,...,Gn). 

If ^ = {Gl5 G2}, where Gx and G2 are shown in Figure 1, then gcs # = [Hu H2}, 
where Ht and H2 are also shown in Figure 1. (All definitions and terminology not 
presented here may be found in [1].) 

2. GREATEST COMMON SUBGRAPHS OF GRAPHS 

We first show that the number of greatest common subgraphs of the two graphs 
can be arbitrarily large. 

Proposition 1. For every positive integer n, there exist graphs Gn and Hn such 
that |gcs(Gn, LQ| = n. 

Proof. First we note that if we define G1 = P3 and H± = 2K2, then gcs (Gl5 Hx) = 
= {K2}. For n ^ 2, define Gn = S(K(l, n)), the subdivision of the star K(l, n), i.e., 
each edge uv of K(l, n) is replaced by a new vertex w and two edges uw and wi;. 
The graph Gn is then obtained from Gn by identifying two endvertices of Gn. Define 
Hn = K(l, n) u nK2. Observe that each of Gn and Hn has size 2n. The graphs G4 

and H4 are shown in Figure 2. 

^ \ 7\ n>-

Figure 2 

Observe that every subgraph (without isolated vertices) of Hn is of the type K(l, r), 
sK2 or K(l, r) u sK2, where 1 = r _ w and 1 _̂  5 _̂  n. Since each of Gn and Hn 

contains K(\,n) as a subgraph, every greatest common subgraph of Gn and Hn 

has size at least n. Further, the edge independence number Pi(Gn) of Gn is n; while 
Pi(Hn) = n + 1 so that nK2 is also a common subgraph of Gn and Hn. Let K(l, r) u 
u sK2 be a common subgraph of Gn and Hn (r, s = 1) of maximum size. If r = 1, 
then 5 = n — 1. For any subgraph K(l, r), r ^ 2, of Gn, there are at most n — r 
independent edges of Gn that neither are adjacent to nor are themselves the edges 
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of K(l, r). Hence r + s —^ n, which implies that every greatest common subgraph 
of Gn and Hn has size n. It now follows that 

gcs (Gn, Hn) = {K(l, n)} u {nK2} u {K(l, r) u (n - r)K2 r = 2, 3 , . . . , « - 1} ; 

consequently, |gcs (Gn, H„)| = n. • 
A branch of a graph G at a vertex v is a maximal connected subgraph of G con

taining v as a non-cut-vert ex. Thus, if v is not a cut-vertex, then there is only one 
branch at v, namely the component of G containing v; otherwise, the number of 
branches at v equals the number of blocks to which v belongs. 

We are now prepared to present a much stronger result than Proposition 1 in the 
case where n = 1. 

Proposition 2. For every graph G without isolated vertices, there exist graphs 
GA and G2 of equal size such that gcs(G1? G2) = {G}. 

Proof. Let G be a graph without isolated vertices having size q(.= l), and let v 
be a vertex of maximum degree in G. We consider two cases. 

Case 1. Suppose that no branch of G at v is isomorphic to P3. In this case we 
construct a graph Gx by adding a new vertex u to G and joining it to v. Define G2 = 
= G u K 2 , where E(G2) - EyG) = {e}. Clearly Gx £ G2. Each of Gx and G2 

has size q + 1, and since G has size q and is a common subgraph of Gx and G2, 
it follows that G e gcs (Gl9 G2). 

We now show that gcs(G l3 G2) = {G}. Assume, to the contrary, that G' e 
e gcs (G1? G2) and G' ^ G. Then G' has size q. Since G' is a subgraph of G2, the 
graph G' is obtained by deleting an edge / from G2 (and any resulting isolated 
vertices), where/ 4= e. The edge /cannot belong to a component isomorphic to K2; 
for otherwise G -̂  G'. Hence/must belong to a component with two or more edges, 
which implies that G' has more components isomorphic to K2 than does G. Since G' 
is a subgraph of Gl5 the graph G' is obtained by deleting an edge/ ' from G t (and any 
resulting isolated vertices), where / ' 4= uv. Since A(G') ^ A(G2) < A(Gt), it follows 
t h a t / ' is incident with v. However, G contains no branches at v isomorphic to P3; 
therefore, G' and G have the same number of components isomorphic to K2, and 
this produces a contradiction. 

Case 2. Suppose that G contains branches at v that are isomorphic to P3. Let B 
be a branch at v isomorphic to P3, where u is the vertex of B adjacent to v and w is 
the remaining vertex of B. Define Gt = G + vw and let G2 = G u K2, where 
E(G2) - E(G) = {e}. Then G1 £ G2, and each of Gx and G2 has size q + 1. Since G 
is a common subgraph of Gt and G2, we conclude that G e gcs (Gl5 G2). 

Next we show that gcs(G l9 G2) = {G}. Assume, to the contrary, that G' e 
e gcs (Gx, G2), where G' ^ G. Then G' has size g. Suppose that G has fc components 
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isomorphic to K2 and t subgraphs isomorphic to K3. Since G' is a subgraph of G2, 
the graph G' is obtained by deleting an edge / from G2 (and any resulting isolated 
vertices), where / =# e. Since / cannot belong to a component isomorphic to K2, 
it implies that G' has at least k + 1 components isomorphic to K2. Further, since 
deleting an edge from a graph does not increase the number of subgraphs isomorphic 
to K3, it follows that G' has at most t subgraphs isomorphic to K3. Now, since G' is 
a subgraph of Gl9 the graph G' is obtained by deleting an edge/ ' from Gt (and any 
isolated vertices), where / ' 4= vw. Since A(G') g A(G2) < A(GX), we see that / ' 
must be incident with v. Moreover, since G1 has k components isomorphic to K2 

and G' has at least k + 1 components isomorphic to K2, it follows that / ' must 
belong to a branch isomorphic to P3. However, this implies that the number of 
subgraphs of G' isomorphic to K3 must equal that in Gl9 which is t + 1. This produces 
the desired contradiction. 

We now show that the above result has no analogue where two graphs are pre
scribed. 

Proposition 3. Let H1 ~ K(l, 6) and H2 ~ K4. Then for every two graphs Gx and 
G2 of equal size, gcs (Gl9 G2) =t= {Hl9 H2). 

Proof. Suppose, to the contrary, that there exist graphs Gx and G2 of equal size 
such that gcs (Gl9 G2) = {Hl9 H2). Observe that not both Gt and G2 have a com
ponent isomorphic to K4; for otherwise, each has a component containing a sub
graph isomorphic to K(l, 6), which implies that K4 u K(l, 6) is a common subgraph 
of G1 and G2. However, since K4 u K(l, 6) has size 12, H{ $ gcs (Gl9 G2) for i = 
= 1, 2, which produces a contradiction. On the other hand, if neither G1 nor G2 has 
a component isomorphic to K4, then both must contain a subgraph isomorphic to 
the graph G of Figure 3. Since G has size 7, however, we again have a contradiction. 

Figure 3 

Therefore, we may now assume that exactly one of Gt and G2, say Gl9 has a com
ponent isomorphic to K4. In Gl9 then, there is another component containing 
a subgraph isomorphic to K(l, 6). In G2, let F be a subgraph isomorphic to K4, and 
let v be a vertex of G2 having degree at least 6. If v e V(F), then each of Gt and G2 

has a subgraph isomorphic to K3 u K(l, 3), which has size 6, so that gcs (Gl5 G2) #= 
=}= {Hl9 H2). If v $ V(F)9 then there are at least two vertices in V(G2) - V(F) that 
are adjacent to v so that Gt and G2 have a subgraph isomorphic to K4 u P3, which 
has size 8, and Hf 4 gcs (Gl9 G2) for i = 1,2. • 

We present yet another extension of Proposition 1. 
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Proposition 4. For every pair m, n of integers with m = 2 and n _ 1, there exist 
pairwise nonisomorphic graphs G1? G2 , . . . , Gm of equal size such that 

\gcs(GuG29...,Gm)\ = n. 

Proof. The result is true for m = 2 by Proposition 1. Otherwise, we proceed 
by cases. 

Case 1. Assume that n = 1. Define 

G, = K(l, m + 2 - i) u iK2 

for i = 1, 2,„.., m. Then Gt has maximum degree A(G,) = m + 2 — i so that 
A(G) :S 2 whenever G e gcs ^ , where 

0 = { G l 5 G 2 , . . . , G m } . 

Moreover, the edge independence number of Gt is J?i(Gf) = i + 1 for / = 1,2,.. .,m. 
Therefore, /^(G) g 2 for G e gcs 0 , and so G = K(l, 2) u K2 is the unique member 
of gcs ^ . 

Case 2. Assume that n = 2. At this point, it is convenient to introduce a class 
of graphs. For nonnegative integers i and j, not both zero, we denote by/S.(l, i + j) 
that graph obtained by subdividing i edges in the graph K(l, i + j). 

For i = 1, 2 , . . . , m, define 

G; = 5 ^ 1 , m + 2 - i) u iK2 , 

and let 0 = {G,}. If G e gcs ^ , then A(G) = 2 and pt(G) = 3. Since P4 u K2 c G; 
for all i, the size g(G) of G satisfies q(G) = 4. Now A(G) = 2; for otherwise G = fK2 

for some t = 4, which contradicts the fact that Pi(G) g 3. Since the length of a longest 
path in each Gf is 3, either G = P4 u K2 or G = P3 u 2K2 so that 

|gcs ^ | = 2 . 

Case 3. Assume that 3 ^ n g m — 1. Here we define 

Gf = 5n_i(l, m + /i - i) u iK2 

for i = 1, 2, ..., m, and let & = {G.}. If G e gcs ^ , then j8i(G) = n + 1 and 
A(G) g n. Since 5n_i(l , n) u K2 c G£ for all i, it follows that q(G) = 2n for any 
such graph G. If A(G) < n, then the structure of the graphs Gt implies that Pi(G) > 
> n + 1, which produces a contradiction. Therefore, A(G) = n whenever G e gcs ^ . 
If#(G) > 2n9 then since A(G) = rc, it follows that Pi(G) > n + 1 which is impossible. 
These observations imply that 

gcs <& = {Sn_f(l, ") ^ tf-2 | i = 1, 2 , . . . , n} . 
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Case 4. Assume that 3 ^ m ^ n. For i = 1, 2, ..., n, define 

Gi = s B . , + 1 ( i , B ) u ( i - i ) i : 2 . 

Consider first gcs (Gi9 Gn). Since Sx(l, n) is a subgraph of both Gt and Gn, it follows 
that if Gegcs(G1, Gn), then q(G) = n + 1. We cannot, however, have q(G) ^ n + 2, 
for this would imply that G has a path of length 3, which is not present in Gn. There
fore, if G e gcs (Gi9 Gn), then q(G) = n + 1. If we define 

H. = s±(l9 n - i + 1) u (i - \)K2 

for i = 1,2,..., n, then it is easy to see that 

gcs(G1,Gn) = {Hf|f = l , 2 , . . . , n } . 

However, since Hj c Gt for all i9j e {1, 2,.. . , n}, it follows that 

gcs (Glf G2,..., Gm_l5 Gn) = {ff. | i = 1, 2,.. . , n} , 

thereby completing the proof. • 

3. THE GCS INDEX OF A GRAPH 

In Proposition 2 we showed that for every graph G without isolated vertices, 
there exist graphs G± and G2 of equal size such that gcs (Gl9 G2) = {G}. By a similar 
argument, the following result, whose proof we omit, can be verified. 

Proposition 5. For every graph G without isolated vertices, there exist pairwise 
nonisomorphic graphs Gl9 G2 and G3 0f equal size such that 

gcs (Gl5G2,G3) = {G}. 

Propositions 2 and 5 suggest the question that for a given graph G without isolated 
vertices and a given integer n = 2 as to whether there exists a set ^ = {G1? G2,..., Gn} 
of n pairwise nonisomorphic graphs of equal size such that gcs ^ = {G}. Certainly 
if n is large, then the graphs in ^ must have large size. By introducing a new graphical 
parameter, we shall see that the answer to this question depends on the given graph G. 

For a graph G without isolated vertices, the greatest common subgraph index 
or gcs index of G, denoted i(G)9 is the least positive integer q0 such that for any 
integer q > q0 and any set 

9 = { G l 9 G 2 9 . . . 9 G H } 9 n = 2 , 

of graphs of size q for which G e gcs (3, it follows that |gcs ^ | > 1, i.e., gcs ^ contains 
an element different from G. If no such q0 exists, then we write i(G) = oo; it is for 
such graphs G that Propositions 2 and 5 can be extended. We illustrate this idea now. 
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Proposition 6. For integers r ^ 1 and n _ 4, 

(a) i(K(l, r)) - oo, 

(b) i(rK2) — oo, and 

(c ) *(__„) = CO. 

Proof, (a) Suppose, to the contrary, that i(K(l, r)) is defined, say i(K(l, r)) = q0 

for some positive integer q0. Let q be an integer such that q > max {q0, r}. Let 

Gx = K(l, q) and G2 = K(l, r) u (q - r) K2 . 
Then 

gCs(GuG2) = {K(l,r)}, 

a contradiction. 
(b) Suppose that i(rK2) = q0 for some positive integer q0, and let q be an integer 

such that q > max {q0, r). Let 

Gx = qK2 and G2 = K(l, q - r -f- 1) u (r - 1)K2 . 

Then gcs (Gu G2) = {rK2}, which contradicts the fact that |gcs (Gu G2)\ > 1. 
(c) Suppose that i(Kn) == a0 f° r some positive integer tf0, and let q be an integer 

such that 
q > max {q0> q„} . 

where q„ = [ J . Define 

Gt = K! + (K,,.- u K,_„) and G2 = K„ u (q - qn) K2 . 

Then gcs (Gu G2) = {K,,}, which is impossible. • 
That the condition n = 4 is required in Proposition 6(c) is now verified. 

Proposition 7. The gcs iniex 0f K3 is 6. 

Proof. For # > 6, let 

^ = {G 1 ,G 2 , . . . ,G n } , n _ 2 , 

be any set of graphs of size q for which K3 e gcs ^ . We show that K2 u P3 e gcs 0 
so that |gcs # | > 1. 

For each i (1 _ i _ w) such that Gf has at least two components, it is obvious 
that K2 u P3 cz Gf. Suppose then that Gs (1 _ j _ w) is connected. Let ^ , t;2 and i>3 

be the vertices of a triangle in Gj. If degGj vt _ 4 for some f (1 _ f _ 3), then K2 u 
u P3 c Gj. On the other hand, if degGj vt _ 3 for all i, then since q > 6, G7- must 
contain an edge incident with none of the vertices vt so that K2 u P3 cz Gj. Hence 
K2 u P3 e gcs ^ , as claimed. 

Therefore, i(K3) _ 6. Suppose,To the contrary, that i(K3) = q0 < 6. Necessarily, 
40 > 3 since K3 e gsc 0 . Now q0 4= 4 since each of G t = K3 u 2K2 and G2 = 
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= K4 — e has size 5 and gcs (Gl9 G2) = {K3}. Further, q0 =t= 5, since HY = 
= K3 u 3K2

 aT1d H2 = K4 háve six edges and gcs (Hl9 H2) = {K3}. Consequently, 
i(K3) = 6. • 

We conclude by determining the gcs index of every path. 

Proposition 8. The gcs index of a path is given by 

w-\" '*' + *• 
[6 íf n = 4 

Proof. By Proposition 6(a), í(Pn) = co for n = 2, 3. Suppose, then, that n = 5 
and assume, to the contrary, that ř(P„) = q0 for some positive integer q0. Let q 
be any integer such that q > max {q0, n — 1}. Let Gt be that graph obtained by 
subdividing an edge of K(l, q — n + 3) a total of « — 3 times, and let 

G2 = Pnv(q - n + 1)K2. 

Then gcs(Gi- G2) = {P„}, which is impossible. 
The proof that f(P4) = 6 is very similar to the proof of Proposition 7 and is there-

fore omitted. • 
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Souhrn 

NEJVĚTŠÍ SPOLEČNÉ PODGRAFY GRAFŮ 
GARY CHARTRAND, FARROKH SABA, HUNG-BIN Zou 

Graf G bez izolovaných vrcholů je největším společným podgrafem množiny 9 grafů, které 
mají všechny stejnou velikost, jestliže G je graf maximální velikosti, který je izomorfní s nějakým 
podgrafem každého grafu z 0. Je podána řada výsledků týkajících se největších společných pod-
grafů. .Zejména je ukázáno, že pro každý graf G bez izolovaných vrcholů existují takové grafy 
Gv G2 stejné velikosti, že G je jejich jediný největší společný podgraf. Další vyšetřování tohoto 
výsledku vede k zavedení parametru, který se nazývá index největšího společného podgrafu 
grafu. 

Pe3K)Me 

HAMEOJIBIHHE OBEJME nOflrPAOBI TPAOOB 
GARY CHARTRAND, FARROKH SABA, HUNG-BÍN Zou 

r p a $ G 6e3 H30JiHpoBaHHbrx BepmHH Ha3MBaeTCH Haá6ojibiiiHM o6imiM noArpa$OM MHO-
acecTBa 9 rpa$OB oAHHaKOBOH BejiHHHHH, ecjin G ecTb rpa$ MaKCHMajibHOH BejnraimH, "KOTOPOH 
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изоморфен некоторому подграфу каждого графа из ^. В статье доказан целый рад резуль
татов о наибольших общих подграфах. В частности здесь показано, что для каждого графа 
С без изолированных вершин существуют такие графы Сг, С2 одинаковой величины, что С 
является их единственным наибольшим общим подграфом. Дальнейшее исследование этого 
результата приводит к определению параметра, которой называется индексом наибольшего 
общего подграфа. 
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