Časopis pro pěstování matematiky

Gary Chartrand; Farrokh Saba; Hung Bin Zou
Greatest common subgraphs of graphs

Časopis pro pěstování matematiky, Vol. 112 (1987), No. 1, 80--88
Persistent URL: http://dml.cz/dmlcz/118296

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

GREATEST COMMON SUBGRAPHS OF GRAPHS

Gary Chartrand ${ }^{1}$), Forrokh Saba, Hung-Bin Zou, Kalamazoo
(Received August 1, 1984)

Summary. A graph G without isolated vertices is a greatest common subgraph of a set \mathscr{G} of graphs, all having the same size, if G is a graph of maximum size that is isomorphic to some subgraph of every graph in \mathscr{G}. A number of results concerning greatest common subgraphs are presented. In particular, it is shown that for integers $m \geqq 3$ and $n \geqq 1$, there exists a set of m graphs of equal size having exactly n greatest common subgraphs. Furthermore, it is shown that for any graph G without isolated vertices, there exist graphs G_{1} and G_{2} of equal size having G as their unique common subgraph. A further investigation of this result gives rise to a parameter, called the greatest common subgraph index of a graph.

1. INTRODUCTION

In [2] the authors introduced the concept of a greatest common subgraph of two graphs G_{1} and G_{2} of the same size (having the same number of edges) for the purpose of studying a distance between G_{1} and G_{2}. This concept can be generalized as follows:

Figure 1
Given a set $\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}, n \geqq 2$, of graphs, all of the same size, a greatest common subgraph of \mathscr{G} is a graph of maximum size and without isolated vertices that is isomorphic to some subgraph of every graph in \mathscr{G}. The set of all greatest

[^0]common subgraphs of \mathscr{G} is denoted by
$$
\operatorname{gcs} \mathscr{G}=\operatorname{gcs}\left(G_{1}, G_{2}, \ldots, G_{n}\right) .
$$

If $\mathscr{G}=\left\{G_{1}, G_{2}\right\}$, where G_{1} and G_{2} are shown in Figure 1, then gcs $\mathscr{G}=\left\{H_{1}, H_{2}\right\}$, where H_{1} and H_{2} are also shown in Figure 1. (All definitions and terminology not presented here may be found in [1].)

2. GREATEST COMMON SUBGRAPHS OF GRAPHS

We first show that the number of greatest common subgraphs of the two graphs can be arbitrarily large.

Proposition 1. For every positive integer n, there exist graphs G_{n} and H_{n} such that $\left|\operatorname{gcs}\left(G_{n}, H_{n}\right)\right|=n$.

Proof. First we note that if we define $G_{1}=P_{3}$ and $H_{1}=2 K_{2}$, then gcs $\left(G_{1}, H_{1}\right)=$ $=\left\{K_{2}\right\}$. For $n \geqq 2$, define $G_{n}^{\prime}=S(K(1, n)$), the subdivision of the star $K(1, n)$, i.e., each edge $u v$ of $K(1, n)$ is replaced by a new vertex w and two edges $u w$ and $w v$. The graph G_{n} is then obtained from G_{n}^{\prime} by identifying two endvertices of G_{n}^{\prime}. Define $H_{n}=K(1, n) \cup n K_{2}$. Observe that each of G_{n} and H_{n} has size $2 n$. The graphs G_{4} and H_{4} are shown in Figure 2.

Figure 2
Observe that every subgraph (without isolated vertices) of H_{n} is of the type $K(1, r)$, $s K_{2}$ or $K(1, r) \cup s K_{2}$, where $1 \leqq r \leqq n$ and $1 \leqq s \leqq n$. Since each of G_{n} and H_{n} contains $K(1, n)$ as a subgraph, every greatest common subgraph of G_{n} and H_{n} has size at least n. Further, the edge independence number $\beta_{1}\left(G_{n}\right)$ of G_{n} is n; while $\beta_{1}\left(H_{n}\right)=n+1$ so that $n K_{2}$ is also a common subgraph of G_{n} and H_{n}. Let $K(1, r) \cup$ $\cup s K_{2}$ be a common subgraph of G_{n} and $H_{n}(r, s \geqq 1)$ of maximum size. If $r=1$, then $s=n-1$. For any subgraph $K(1, r), r \geqq 2$, of G_{n}, there are at most $n-r$ independent edges of G_{n} that neither are adjacent to nor are themselves the edges
of $K(1, r)$. Hence $r+s \leqq n$, which implies that every greatest common subgraph of G_{n} and H_{n} has size n. It now follows that

$$
\operatorname{gcs}\left(G_{n}, H_{n}\right)=\{K(1, n)\} \cup\left\{n K_{2}\right\} \cup\left\{K(1, r) \cup(n-r) K_{2} \quad r=2,3, \ldots, n-1\right\} ;
$$

consequently, $\left|\operatorname{gcs}\left(G_{n}, H_{n}\right)\right|=n$.
A branch of a graph G at a vertex v is a maximal connected subgraph of G containing v as a non-cut-vertex. Thus, if v is not a cut-vertex, then there is only one branch at v, namely the component of G containing v; otherwise, the number of branches at v equals the number of blocks to which v belongs.

We are now prepared to present a much stronger result than Proposition 1 in the case where $n=1$.

Proposition 2. For every graph G without isolated vertices, there exist graphs G_{1} and G_{2} of equal size such that $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\{G\}$.

Proof. Let G be a graph without isolated vertices having size $q(\geqq 1)$, and let v be a vertex of maximum degree in G. We consider two cases.

Case 1. Suppose that no branch of G at v is isomorphic to P_{3}. In this case we construct a graph G_{1} by adding a new vertex u to G and joining it to v. Define $G_{2}=$ $=G \cup K_{2}$, where $E\left(G_{2}\right)-E(G)=\{e\}$. Clearly $G_{1} \not \approx G_{2}$. Each of G_{1} and G_{2} has size $q+1$, and since G has size q and is a common subgraph of G_{1} and G_{2}, it follows that $G \in \operatorname{gcs}\left(G_{1}, G_{2}\right)$.

We now show that $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\{G\}$. Assume, to the contrary, that $G^{\prime} \in$ $\in \operatorname{gcs}\left(G_{1}, G_{2}\right)$ and $G^{\prime} \not \approx G$. Then G^{\prime} has size q. Since G^{\prime} is a subgraph of G_{2}, the graph G^{\prime} is obtained by deleting an edge f from G_{2} (and any resulting isolated vertices), where $f \neq e$. The edge f cannot belong to a component isomorphic to K_{2}; for otherwise $G \simeq G^{\prime}$. Hence f must belong to a component with two or more edges, which implies that G^{\prime} has more components isomorphic to K_{2} than does G. Since G^{\prime} is a subgraph of G_{1}, the graph G^{\prime} is obtained by deleting an edge f^{\prime} from G_{1} (and any resulting isolated vertices), where $f^{\prime} \neq u v$. Since $\Delta\left(G^{\prime}\right) \leqq \Delta\left(G_{2}\right)<\Delta\left(G_{1}\right)$, it follows that f^{\prime} is incident with v. However, G contains no branches at v isomorphic to P_{3}; therefore, G^{\prime} and G have the same number of components isomorphic to K_{2}, and this produces a contradiction.

Case 2. Suppose that G contains branches at v that are isomorphic to P_{3}. Let B be a branch at v isomorphic to P_{3}, where u is the vertex of B adjacent to v and w is the remaining vertex of B. Define $G_{1}=G+v w$ and let $G_{2}=G \cup K_{2}$, where $E\left(G_{2}\right)-E(G)=\{e\}$. Then $G_{1} \neq G_{2}$, and each of G_{1} and G_{2} has size $q+1$. Since G is a common subgraph of G_{1} and G_{2}, we conclude that $G \in \operatorname{gcs}\left(G_{1}, G_{2}\right)$.

Next we show that $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\{G\}$. Assume, to the contrary, that $G^{\prime} \in$ $\in \operatorname{gcs}\left(G_{1}, G_{2}\right)$, where $G^{\prime} \neq G$. Then G^{\prime} has size q. Suppose that G has k components
isomorphic to K_{2} and t subgraphs isomorphic to K_{3}. Since G^{\prime} is a subgraph of G_{2}, the graph G^{\prime} is obtained by deleting an edge f from G_{2} (and any resulting isolated vertices), where $f \neq e$. Since f cannot belong to a component isomorphic to K_{2}, it implies that G^{\prime} has at least $k+1$ components isomorphic to K_{2}. Further, since deleting an edge from a graph does not increase the number of subgraphs isomorphic to K_{3}, it follows that G^{\prime} has at most t subgraphs isomorphic to K_{3}. Now, since G^{\prime} is a subgraph of G_{1}, the graph G^{\prime} is obtained by deleting an edge f^{\prime} from G_{1} (and any isolated vertices), where $f^{\prime} \neq v w$. Since $\Delta\left(G^{\prime}\right) \leqq \Delta\left(G_{2}\right)<\Delta\left(G_{1}\right)$, we see that f^{\prime} must be incident with v. Moreover, since G_{1} has k components isomorphic to K_{2} and G^{\prime} has at least $k+1$ components isomorphic to K_{2}, it follows that f^{\prime} must belong to a branch isomorphic to P_{3}. However, this implies that the number of subgraphs of G^{\prime} isomorphic to K_{3} must equal that in G_{1}, which is $t+1$. This produces the desired contradiction.

We now show that the above result has no analogue where two graphs are prescribed.

Proposition 3. Let $H_{1} \simeq K(1,6)$ and $H_{2} \simeq K_{4}$. Then for every two graphs G_{1} and G_{2} of equal size, $\operatorname{gcs}\left(G_{1}, G_{2}\right) \neq\left\{H_{1}, H_{2}\right\}$.

Proof. Suppose, to the contrary, that there exist graphs G_{1} and G_{2} of equal size such that $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\left\{H_{1}, H_{2}\right\}$. Observe that not both G_{1} and G_{2} have a component isomorphic to K_{4}; for otherwise, each has a component containing a subgraph isomorphic to $K(1,6)$, which implies that $K_{4} \cup K(1,6)$ is a common subgraph of G_{1} and G_{2}. However, since $K_{4} \cup K(1,6)$ has size $12, H_{i} \notin \operatorname{gcs}\left(G_{1}, G_{2}\right)$ for $i=$ $=1,2$, which produces a contradiction. On the other hand, if neither G_{1} nor G_{2} has a component isomorphic to K_{4}, then both must contain a subgraph isomorphic to the graph G of Figure 3. Since G has size 7, however, we again have a contradiction.

Figure 3
Therefore, we may now assume that exactly one of G_{1} and G_{2}, say G_{1}, has a component isomorphic to K_{4}. In G_{1}, then, there is another component containing a subgraph isomorphic to $K(1,6)$. In G_{2}, let F be a subgraph isomorphic to K_{4}, and let v be a vertex of G_{2} having degree at least 6 . If $v \in V(F)$, then each of G_{1} and G_{2} has a subgraph isomorphic to $K_{3} \cup K(1,3)$, which has size 6 , so that $\operatorname{gcs}\left(G_{1}, G_{2}\right) \neq$ $\neq\left\{H_{1}, H_{2}\right\}$. If $v \notin V(F)$, then there are at least two vertices in $V\left(G_{2}\right)-V(F)$ that are adjacent to v so that G_{1} and G_{2} have a subgraph isomorphic to $K_{4} \cup P_{3}$, which has size 8 , and $H_{i} \notin \operatorname{gcs}\left(G_{1}, G_{2}\right)$ for $i=1,2$.

We present yet another extension of Proposition 1.

Proposition 4. For every pair m, n of integers with $m \geqq 2$ and $n \geqq 1$, there exist pairwise nonisomorphic graphs $G_{1}, G_{2}, \ldots, G_{m}$ of equal size such that

$$
\left|\operatorname{gcs}\left(G_{1}, G_{2}, \ldots, G_{m}\right)\right|=n .
$$

Proof. The result is true for $m=2$ by Proposition 1. Otherwise, we proceed by cases.

Case 1. Assume that $n=1$. Define

$$
G_{i}=K(1, m+2-i) \cup i K_{2}
$$

for $i=1,2, \ldots, m$. Then G_{i} has maximum degree $\Delta\left(G_{i}\right)=m+2-i$ so that $\Delta(G) \leqq 2$ whenever $G \in \operatorname{gcs} \mathscr{G}$, where

$$
\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{m}\right\}
$$

Moreover, the edge independence number of G_{i} is $\beta_{1}\left(G_{i}\right)=i+1$ for $i=1,2, \ldots, m$. Therefore, $\beta_{1}(G) \leqq 2$ for $G \in \operatorname{gcs} \mathscr{G}$, and so $G=K(1,2) \cup K_{2}$ is the unique member of gcs \mathscr{G}.

Case 2. Assume that $n=2$. At this point, it is convenient to introduce a class of graphs. For nonnegative integers i and j, not both zero, we denote by $S_{i}(1, i+j)$ that graph obtained by subdividing i edges in the graph $K(1, i+j)$.
For $i=1,2, \ldots, m$, define

$$
G_{i}=S_{1}(1, m+2-i) \cup i K_{2}
$$

and let $\mathscr{G}=\left\{G_{i}\right\}$. If $G \in \operatorname{gcs} \mathscr{G}$, then $\Delta(G) \leqq 2$ and $\beta_{1}(G) \leqq 3$. Since $P_{4} \cup K_{2} \subset G_{i}$ for all i, the size $q(G)$ of G satisfies $q(G) \geqq 4$. Now $\Delta(G)=2$; for otherwise $G=t K_{2}$ for some $t \geqq 4$, which contradicts the fact that $\beta_{1}(G) \leqq 3$. Since the length of a longest path in each G_{i} is 3 , either $G=P_{4} \cup K_{2}$ or $G=P_{3} \cup 2 K_{2}$ so that

$$
|\operatorname{gcs} \mathscr{G}|=2
$$

Case 3. Assume that $3 \leqq n \leqq m-1$. Here we define

$$
G_{i}=S_{n-1}(1, m+n-i) \cup i K_{2}
$$

for $i=1,2, \ldots, m$, and let $\mathscr{G}=\left\{G_{\imath}\right\}$. If $G \in \operatorname{gcs} \mathscr{G}$, then $\beta_{1}(G) \leqq n+1$ and $\Delta(G) \leqq n$. Since $S_{n-1}(1, n) \cup K_{2} \subset G_{i}$ for all i, it follows that $q(G) \geqq 2 n$ for any such graph G. If $\Delta(G)<n$, then the structure of the graphs G_{i} implies that $\beta_{1}(G)>$ $>n+1$, which produces a contradiction. Therefore, $\Delta(G)=n$ whenever $G \in \operatorname{gcs} \mathscr{G}$. If $q(G)>2 n$, then since $\Delta_{(}(G)=n$, it follows that $\beta_{1}(G)>n+1$ which is impossible. These observations imply that

$$
\operatorname{gcs} \mathscr{G}=\left\{S_{n-i}(1, n) \cup i K_{2} \mid i=1,2, \ldots, n\right\} .
$$

Case 4. Assume that $3 \leqq m \leqq n$. For $i=1,2, \ldots, n$, define

$$
G_{i}=S_{n-i+1}(1, n) \cup(i-1) K_{2} .
$$

Consider first gcs $\left(G_{1}, G_{n}\right)$. Since $S_{1}(1, n)$ is a subgraph of both G_{1} and G_{n}, it follows that if $G \in \operatorname{gcs}\left(G_{1}, G_{n}\right)$, then $q(G) \geqq n+1$. We cannot, however, have $q(G) \geqq n+2$, for this would imply that G has a path of length 3 , which is not present in G_{n}. Therefore, if $G \in \operatorname{gcs}\left(G_{1}, G_{n}\right)$, then $q(G)=n+1$. If we define

$$
H_{i}=S_{1}(1, n-i+1) \cup(i-1) K_{2}
$$

for $i=1,2, \ldots, n$, then it is easy to see that

$$
\operatorname{gcs}\left(G_{1}, G_{n}\right)=\left\{H_{i} \mid i=1,2, \ldots, n\right\} .
$$

However, since $H_{j} \subset G_{i}$ for all $i, j \in\{1,2, \ldots, n\}$, it follows that

$$
\operatorname{gcs}\left(G_{1}, G_{2}, \ldots, G_{m-1}, G_{n}\right)=\left\{H_{i} \mid i=1,2, \ldots, n\right\}
$$

thereby completing the proof.

3. THE GCS INDEX OF A GRAPH

In Proposition 2 we showed that for every graph G without isolated vertices, there exist graphs G_{1} and G_{2} of equal size such that $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\{G\}$. By a similar argument, the following result, whose proof we omit, can be verified.

Proposition 5. For every graph G without isolated vertices, there exist pairwise nonisomorphic graphs G_{1}, G_{2} and G_{3} of equal size such that

$$
\operatorname{gcs}\left(G_{1}, G_{2}, G_{3}\right)=\{G\}
$$

Propositions 2 and 5 suggest the question that for a given graph G without isolated vertices and a given integer $n \geqq 2$ as to whether there exists a set $\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of n pairwise nonisomorphic graphs of equal size such that gcs $\mathscr{G}=\{G\}$. Certainly if n is large, then the graphs in \mathscr{G} must have large size. By introducing a new graphical parameter, we shall see that the answer to this question depends on the given graph G.

For a graph G without isolated vertices, the greatest common subgraph index or gcs index of G, denoted $i(G)$, is the least positive integer q_{0} such that for any integer $q>q_{0}$ and any set

$$
\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}, \quad n \geqq 2,
$$

of graphs of size q for which $G \in \operatorname{gcs} \mathscr{G}$, it follows that $|\operatorname{gcs} \mathscr{G}|>1$, i.e., gcs \mathscr{G} contains an element different from G. If no such q_{0} exists, then we write $i(G)=\infty$; it is for such graphs G that Propositions 2 and 5 can be extended. We illustrate this idea now.

Proposition 6. For integers $r \geqq 1$ and $n \geqq 4$,
(a) $i(K(1, r))=\infty$,
(b) $i\left(r K_{2}\right)=\infty$, and
(c) $i\left(K_{n}\right)=\infty$.

Proof. (a) Suppose, to the contrary, that $i(K(1, r))$ is defined, say $i(K(1, r))=q_{0}$ for some positive integer q_{0}. Let q be an integer such that $q>\max \left\{q_{0}, r\right\}$. Let

$$
G_{1}=K(1, q) \quad \text { and } \quad G_{2}=K(1, r) \cup(q-r) K_{2}
$$

Then

$$
\operatorname{gcs}\left(G_{1}, G_{2}\right)=\{K(1, r)\},
$$

a contradiction.
(b) Suppose that $i\left(r K_{2}\right)=q_{0}$ for some positive integer q_{0}, and let q be an integer such that $q>\max \left\{q_{0}, r\right\}$. Let

$$
G_{1}=q K_{2} \quad \text { and } \quad G_{2}=K(1, q-r+1) \cup(r-1) K_{2} .
$$

Then $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\left\{r K_{2}\right\}$, which contradicts the fact that $\left|\operatorname{gcs}\left(G_{1}, G_{2}\right)\right|>1$.
(c) Suppose that $i\left(K_{n}\right)=q_{0}$ for some positive integer q_{0}, and let q be an integer such that

$$
q>\max \left\{q_{0}, q_{n}\right\}
$$

where $q_{n}=\binom{n}{2}$. Define

$$
G_{1}=K_{1}+\left(K_{n-1} \cup \bar{K}_{q-n}\right) \quad \text { and } \quad G_{2}=K_{n} \cup\left(q-q_{n}\right) K_{2} .
$$

Then $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\left\{K_{n}\right\}$, which is impossible.
That the condition $n \geqq 4$ is required in Proposition 6(c) is now verified.

Proposition 7. The gcs index of K_{3} is 6.
Proof. For $q>6$, let

$$
\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}, \quad n \geqq 2,
$$

be any set of graphs of size q for which $K_{\mathbf{3}} \in \operatorname{gcs} \mathscr{G}$. We show that $K_{\mathbf{2}} \cup P_{\mathbf{3}} \in \operatorname{gcs} \mathscr{G}$ so that $|\operatorname{gcs} \mathscr{G}|>1$.

For each $i(1 \leqq i \leqq n)$ such that G_{i} has at least two components, it is obvious that $K_{2} \cup P_{3} \subset G_{i}$. Suppose then that $G_{j}(1 \leqq j \leqq n)$ is connected. Let v_{1}, v_{2} and v_{3} be the vertices of a triangle in G_{j}. If $\operatorname{deg}_{G_{j}} v_{i} \geqq 4$ for some $i(1 \leqq i \leqq 3)$, then $K_{2} \cup$ $\cup P_{3} \subset G_{j}$. On the other hand, if $\operatorname{deg}_{G_{j}} v_{i} \leqq 3$ for all i, then since $q>6, G_{j}$ must contain an edge incident with none of the vertices v_{i} so that $K_{2} \cup P_{3} \subset G_{j}$. Hence $K_{2} \cup P_{3} \in \operatorname{gcs} \mathscr{G}$, as claimed.

Therefore, $i\left(K_{3}\right) \leqq 6$. Suppose, to the contrary, that $i\left(K_{3}\right)=q_{0}<6$. Necessarily, $q_{0}>3$ since $K_{3} \in \operatorname{gsc} \mathscr{G}$. Now $q_{0} \neq 4$ since each of $G_{1}=K_{3} \cup 2 K_{2}$ and $G_{2}=$
$=K_{4}-e$ has size 5 and $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\left\{K_{3}\right\}$. Further, $q_{0} \neq 5$, since $H_{1}=$ $=K_{3} \cup 3 K_{2}$ and $H_{2}=K_{4}$ have six edges and gcs $\left(H_{1}, H_{2}\right)=\left\{K_{3}\right\}$. Consequently, $i\left(K_{3}\right)=6$.

We conclude by determining the gcs index of every path.
Proposition 8. The ges index of a path is given by

$$
i\left(P_{n}\right)=\left\{\begin{array}{lll}
\infty & \text { if } & n \neq 4 \\
6 & \text { if } & n=4
\end{array}\right.
$$

Proof. By Proposition 6(a), $i\left(P_{n}\right)=\infty$ for $n=2$, 3. Suppose, then, that $n \geqq 5$ and assume, to the contrary, that $i\left(P_{n}\right)=q_{0}$ for some positive integer q_{0}. Let q be any integer such that $q>\max \left\{q_{0}, n-1\right\}$. Let G_{1} be that graph obtained by subdividing an edge of $K(1, q-n+3)$ a total of $n-3$ times, and let

$$
G_{2}=P_{n} \cup(q-n+1) K_{2} .
$$

Then $\operatorname{gcs}\left(G_{1}, G_{2}\right)=\left\{P_{n}\right\}$, which is impossible.
The proof that $i\left(P_{4}\right)=6$ is very similar to the proof of Proposition 7 and is therefore omitted.

References

[1] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs \& Digraphs, Wadsworth, Belmont, CA (1979).
[2] G. Chartrand, F. Saba and H.-B. Zou: Edge rotations and distance between graphs. Čas. pěst. mat. 110 (1985), 87-91.

Souhrn

NEJVĚTŠí SPOLEČNÉ PODGRAFY GRAFỦ
Gary Chartrand, Farrokh Saba, Hung-Bin Zou
Graf G bez izolovaných vrcholủ je největším společným podgrafem množiny \mathscr{G} grafủ, které mají všechny stejnou velikost, jestliže G je graf maximální velikosti, který je izomorfní s nějakým podgrafem každého grafu z \mathscr{G}. Je podána řada výsledku̇ týkajících se největšich společných podgrafủ. Zejména je ukázáno, že pro každý graf G bez izolovaných vrcholu̇ existují takové grafy G_{1}, G_{2} stejné velikosti, že G je jejich jediný nejvêtší společný podgraf. Další vyšetřování tohoto výsledku vede k zavedení parametru, který se nazývá index největšiho společného podgrafu grafu.

Резюме

НАЙБОЛЬШИЕ ОБЩИЕ ПОДГРАФЫ ГРАФОВ

Gary Chartrand, Farrokh Saba, Hung-Bín Zou
Граф G без изолированных вершин называется найбольшим общим подграфом множества \mathscr{G} графов одинаковой величины, если G есть граф максимальной величины, которой

изоморфен некоторому подграфу каждого графа из \mathscr{G}. В статье доказан целый рад результатов о найбольших общих подграфах. В частности здесь показано, что для каждого графа G без изолированных вершин существуют такие графы G_{1}, G_{2} одинаковой величины, что G. является их единственным найбольшим общим подграфом. Дальнейшее исследование этого результата приводит к определению параметра, которой называется индексом найбольшего общего подграфа.

Anthors' address: Western Michigan University, Department of Mathematics, Kalamazoo, Michigan 49008.

[^0]: ${ }^{1}$) Research supported by a Western Michigan University faculty research fellowship.

