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ZPRÁVY 

RECENT RESULTS OF NOVOSIBIRSK MATHEMATICIANS 
IN GRAPH THEORY 

L. S. MEL'NIKOV, Novosibirsk 

Summary. The paper gives an overview of recent results obtained in graph theory by a group 
of Novosibirsk mathematicians (Aksionov, Borodin, Kostochka, Mel'nikov, Ponomarev, Taski-
nov). The following themes are dealt with: colouring, interval representations, topological im-
beddings, Hadwiger number, Berge's conjecture on regular subgraphs of regular graphs, one 
problem on spanning trees. 

1. INTERVALS AND COLOURINGS 

Following [1], [2] let us consider graphs G = (V9 E) without loops and multiple 
edges. Assign to each vertex v e V(G) a nonnegative weight h(v). The weight of the 
subset S c V(G) will be defined naturally as h(S) — ]T h(v). Let us assume without 

veS 

loss of generality that the weights h(v) are integers. The pair (G, h) will be called 
a weighted graph (WG). By an interval representation (IR) we shall mean such 
a mapping J of the set of the vertices of the WG into a set of intervals in the real 
axis that it assigns to each vertex ve V(G) an interval J(v) of length \J(v)\ = h(v). 
We call an IR chromatic if the intervals assigned to adjacent vertices are disjoint, 
i.e. (v, u) e E(G) => J(v) n J(u) = 0. The length of an IR (G, h, J) is the number 
L(G, h, J) = | (J J(v)\. If there are not conditions for the type of the IR then the 

veV(G) 

least length of a given WG is obviously max h(v). But things are quite different for 
veV(G) 

chromatic IR. Call the chromatic length of a WC (G, h) the number /(G, h) = 
= min L(G, h, J), where the minimum is taken over all chromatic IR. 

J 
The problem to construct a chromatic IR may have various applications [8], e.g. 

connected to scheduling problems. 
The clique length of a WG (G, h) shall be the number 

o){G9 h) = max h{K) , 
K 

where K ranges over all subsets of vertices that induce a clique in G. The following 
inequalities are obvious: 

co(G,h)£X(G,h)£h(V(G)). 

89 



Proposition 1.1. [1]. If h(v) = c is constant for all v e V(G) then x(G, h) = c /(G), 

where x(G) is the chromatic number of the graph G. 

Proposition 1.2. [8]. #(G, h) = min (max h(V(P))), where A(G) is the set of all 
G'eA(G) P^G' 

acyclic orientations of the edges of G, and P _= Gf is a directed path in the di
graph G'. 

def 

Proposition 1.3. [2]. #(G, h) :g A(G, h) = max h(N(v))9 where by the neigh-
veV{G) 

borhood N(v) Of the vertex v we mean the set of all vertices adjacent to v together 
with v itself: 

N(v) = {v} u {uj(v, u) e E(G)} . 

By far not all known estimates for the chromatic number admit generalization to 
chromatic length. The following bound is well known:#(G) ^ max( min \d(v) + 1]). 

G'1=G veV(G') 

Define analogously to the right-hand side: w(G, h) = max ( min h(N(v))). 
G'ZG veV(G') 

Proposition 1.4. [2] For arbitrary k = 0 there is (G, h) such that /(G, h) > 

> w(G, h) + fc. 

Є92 

Proposition 1.5. [2]. /(C2k+1>h) = max { max h(e), min h(N(v))}, where 
ceE(C2k+i) t;eF(C2k+i) 

h(e) = h(u) + h(v) and e = (u, v). If K is complete then x(K, h) = A(K, h). 
In view of this fact and of proposition 1.5, Aksinov assumes the following gener

alization of Brooks's theorem [6] to hold: 

Conjecture 1.6. [2]. Assume G to be connected and x(G, h) = A(G, h), then 
either G is complete or G is an odd cycle with h(v) = const for all v e V(G). 
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2. TOPOLOGICAL IMBEDDINGS AND COLOURINGS 

Here I shall omit my old results [2] and concentrate on several new results of 
Borodin [3], [4]. 

Call a graph 1-planar if there exists its representation in the plane such that each 
edge intersects at most one other edge of the graph. 

In [3], the following theorem is proved, verifying Ringel's hypothesis [15]: 

Theorem 2.1. Suppose the graph G is l-planar, then for its chromatic number 
X{G) ^ 6. 

Fig. 2 

The graph on Fig. 2 is K6 and is obviously 1-planar, which shows that the theorem 
cannot be improved. The generalization of 1-planarity to 1-embedding into an ar
bitrary closed two dimensional surface F^ with Euler's characteristics N is straight
forward, as well as the definition of the upper bound of the chromatic number of 
graphs admitting such a 1-embedding. Ringel [16] obtained such an upper bound 
of the chromatic number ^(N) g [(9 + 7(81 - 32N))/2] for N ^ 2. He also 
showed it to be exact for Klein's bottle and for the torus (N = 0), for N = 2 its 
exactness follows from Theorem 2.L Schumacher and Wegner showed that for the 
projective plane (N = l) the bound is not sharp and Zi(l) = 7. However, further 
extension of these results meets substantial difficulties arising in connection with 
systematization of 1-embeddings of complete graphs into FN. Unfortunately, the 
Ringel-Youngs theory of flow graphs and imbeddings connected with them admits 
no simple transfer to 1-embeddings. 

Combined colourings appear rather often (see e.g. [19] the total chromatic number 
and the author's hypotheses [12]). In fact, in [3] the problem of vertex colouring 
of 1-planar graphs was reduced to the combined colouring of planar graphs having 
only 3- and 4-faces in such a way that two vertices adjacent to the same face are 
assigned different colours. The first to deal with combined colouring appears to 
have been Ringel [15] who conjectured the following result due to Borodin [3] 
which follows from Theorem 2.1. 
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Theorem 2.2. For any planar graph there is a combined colouring of vertices and 
edges with 6 colours. 

Theorem 2.3. [3], [4] (without proof) 

[3fc/2]+
 = X(k) = 2fc - 1 , 

where X(k) is the maximal chromatic number of planar graphs where all faces 
of degree d*(F) ^ fc have their vertices coloured in different colours. (["] + denotes 
here the post office function.) 

The pseudosphere (or pseudoplane) F% arises from the sphere by pairwise identi
fying 2fc different points. 

There are three different possible ways of imbedding a graph into a pseudo-
surface (in particular, into the pseudosphere): 

1) through the "double" points of the pseudosurface the edges may not pass, 
2) in the "double" points there may not lie vertices, 
3) no conditions. 

Theorem 2.4. 

Case 1: [7], [5] X^(F}) = min {fc + 4, [(7 + V(l + 24fc))/2], 12}, fc > 0. 

Case 2: [9] X
{2)(F}) = [(7 + 7(1 + 8fc))/2] for fc > 0. 

Case 3: [5] X™(F2
k) = min {fc + 4, [(7 + V(l + 24fc))/2], 

[(11 + V(73 + 8fc))/2]} for fc > 0. 

For 1-embeddings into the pseudosphere Borodin proved (only for case 2): 

Theorem 2.5. [4] rf^) = i-(9 + ^ 1 7 + 1 6 « for 0 g fc * 4, 
[ 8 for fc = 4. 

3. THE HADWIGER NUMBER n(G) 

A. V. Kostochka disproved Zelinka's conjecture [20] that the inequality 

rj(G) + rj(G) = n(G) + 1 
is a sharp bound. 

Theorem 3.1. [10]. For an arbitrary simple graph of n vertices (n ^ 5) the fol
lowing sharp bounds hold: 

,(G) + , ( G ) ^ | ] , » ( G ) . » ( 5 ) ^ [ ^ « ] ) 2 ] . 

Kostochka's paper [11] is devoted to classification of the behaviour of the minimal 

92 



Hadwiger number in the class @k of graphs the average degree of which is not less 
than fc. Denote 

n(k) = min n(G) , vv(fc) = min (*/(G)/x(G) = fc} , 

v(fc) = min {n(G)jG is fc-connected} , 

Sk = JG/|F(G)| ^ k, \E(G)\ > k\V(G)\ - ( f c + * ) l , ^(K) = mm r,(G) . 

Mader, Miller, Zelinka and Zykov looked into the behaviour of the function n(k). 
The best results that could be achieved were the bounds 

k < m < 4k 

Theorem 3.2. [11] For k ^ 2, tj(k) ^ 

Corollary 3.3. For fc^2, w(k) ^ 

8 log2 к Vl°ë2 fe 

к 
270 Vlog2 fe 

540 Vlog2 fc 

Corollary 3.4. Hadwigefs conjecture holds for almost all graphs (P. Erdos, 
B. Bollobds, P. Catlin). 

Corollary 3.5. For fc sufficiently large, Hadwiger's conjecture holds for almost 
all graphs with n vertices and kn edges. 

Corollary 3.6. min (n(G) + n(G)) = O (—^—), 
\v(G)\=n \JlognJ 

Hence, we know the order of the lower bound for the sum n(G) + n(G), but 
unfortunately an exact lower bound is not known. 

Corollary 3.7. v(fc) = 

Theorem 3.8. [11]. nJk) = — . for k = 2. 
27 log2 fc 

4. REGULAR SUBGRAPHS OF REGULAR GRAPHS 

Berge's conjecture states that any 4-regular graph has a 3-regular subgraph. 
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Theorem 4.1. [17], [18]. Every 4-regular graph has a 3-regular subgraph. 
V. A. Taskinov studied in sufficient generality the problem under which conditions 

an r-regular graph has a O-regular subgraph. His results are contained in a dis
sertation which is to be presented in the near future. Partial problems are answered 
in the following two theorems. 

Theorem 4.2. [17]. For any r _ 3 any r-regular graph has a 3-regular subgraph. 

Theorem 4.3. [17] -I- [Dissertation]. For any r ^ 5 there is an r-regular graph 
which has no (r — \)-regular subgraph. 

5. SPANNING TREES WITH LIMITED NUMBER OF END EDGES 

Vizing's problem [19] is: To find max |F(G)|/n(G) = n and any spanning tree 
of the graph G has no more than k end edges (i.e. edges adjacent to an end vertex). 
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In the case of G connected, denote that maximum by m(n, k), and in the case of an 

arbitrary graph G by M(n, k). 

Theorem 5.1. [13]. m(n, k) = n + (k + 1) (k - 2)/2 for k * n - 2, 2 g k ^ 

g f t - 1, 

m(n, k) = [n(n - 2)/2] for k = n - 2, ft = 4 , 

m(n, k) = 1 for k = n = 2 ; 

max ( n + i(fc + 1) (fc - 2) , Г ^ Ш ) , 2 ś H л - l , 

M(n, k) = 

n\2 for k = n 

The proof of Theorem 5A is based on a result formulated by B. Zelinka [21] but as 

the proof contained a mistake we had to do it new [14]. 

Theorem 5.2. [14]. The maximal number of edges of a connected graph of n 

vertices any spanning tree of which has not more than n — 3 end edges, is equal 

to (n 2 — 5n + 10)/2fOr ft ^ 5, and all extremal graphs are given in Fig. 3. 
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Souhrn 

NOVÉ VÝSLEDKY NOVOSIBIRSKÝCH MATEMATIKŮ V TEORII GRAFŮ 

L. S. MĚLNIKOV 

Práce podává přehled nových výsledků skupiny novosibirských matematiků (Aksjonov, 
Borodin, KostoČka, Mělnikov, Ponomarev, Taškinov) v teorii grafů. Jsou pojednána tato 
témata: barvení, intervalové reprezentace, topologická vnoření, Hadwigerovo číslo, Bergeova 
hypotéza o regulárních podgrafech regulárních grafů a jeden problém o kostrách. 

Резюме 

НОВЫЕ РЕЗУЛЬТАТЫ НОВОСИБИРСКИХ МАТЕМАТИКОВ 
В ТЕОРИИ ГРАФОВ 

^ . 3. МЕХМКОУ 

В работе дается обзор новых результатов 1руппы новосибирских математиков (Аксенов, 
Бородин, Косточка, Мельников, Пономарев, Ташкииов) в теории графов. Рассмотрены сле
дующие темы: раскраски, интервальные представления, топологические вложения, число 
Хадвигера, гипотеза Бержа о регулярных подграфах регулярных графов и одна проблема 
связанная с каркасами графа. 

Ашког'х аа'а'гезз: 1п51ки1е оГ Магпетагкз, Зиэепап ВгапсЬ., Асааету оГ Заепсез оГ тпе 
Ш З К , 630090 ЫоусиИпгвк, Ш8Я. 
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