Bohdan Zelinka The bigraph decomposition number of a graph

Časopis pro pěstování matematiky, Vol. 113 (1988), No. 1, 56--59

Persistent URL: http://dml.cz/dmlcz/118332

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

THE BIGRAPH DECOMPOSITION NUMBER OF A GRAPH

BOHDAN ZELINKA, Liberec

(Received October 4, 1985)

Summary. The bigraph decomposition number b(G) of a graph G is the minimum number of edge-disjoint complete bipartite graphs into which G can be decomposed. In the paper b(G) is studied for weak products and direct products of graphs and is related to the domination number of G.

Keywords: Bipartite graph, decomposition of a graph, bigraph decomposition number.

AMS Classifications: 05C35

In [1], Problems 3.11 and 3.12, D. West introduced a new numerical invariant of a graph; he denoted it by b(G). We shall call it the bigraph decomposition number.

We shall consider finite undirected graphs without loops and multiple edges. A bipartite graph will be shortly called a bigraph; this is a graph G whose vertex set is the union of two disjoint sets A, B (called the bipartition classes of G) which have the property that each edge of G joins a vertex of A with a vertex of B. If each vertex of A is joined by an edge with each vertex of B, such a graph is called a complete bigraph. The symbol $K_{m,n}$ denotes the complete bigraph in which |A| = m, |B| = n.

A bigraph decomposition of a graph G is a family of subgraphs of G which are complete bigraphs and have the property that each edge of G belongs to exactly one of them. The least cardinality of a bigraph decomposition of G is called the bigraph decomposition number of G and denoted by b(G).

The problems of D. West from [1] are the following:

Determine b(G) for special classes of graphs, or give a bound for it in terms of other parameters.

How does b(G) behave under weak product and the other graph products? We shall touch both the problems.

First we shall consider the weak product and the direct product of two graphs.

A weak product of two graphs G_1 , G_2 is the graph whose vertex set is the Cartesian product $V(G_1) \times V(G_2)$ of the vertex sets $V(G_1)$, $V(G_2)$ of G_1 and G_2 , and in which two vertices (u_1, u_2) , (v_1, v_2) are adjacent if and only if u_1 , v_1 are adjacent in G_1 and u_2 , v_2 are adjacent in G_2 .

Theorem 1. Let G be the weak product of two graphs G_1 , G_2 , without isolated vertices.

56 🧳

$$b(G) \leq 2 b(G_1) b(G_2),$$

and this bound cannot be improved.

Proof. Let \mathscr{B}_1 (or \mathscr{B}_2) be a bigraph decomposition of G_1 (or G_2 , respectively) of the minimum cardinality. Let $H_1 \in \mathscr{B}_1$, $H_2 \in \mathscr{B}_2$, and let A_1 , B_1 be the bipartition classes of H_1 and A_2 , B_2 the bipartition classes of H_2 . The subgraphs of G induced by $(A_1 \times A_2) \cup (B_1 \times B_2)$ and by $(A_1 \times B_2) \cup (A_2 \times B_1)$ are complete bigraphs; denote them by $L_1(H_1, H_2)$ and $L_2(H_1, H_2)$, respectively. Consider the family \mathscr{B} of all graphs $L_1(H_1, H_2)$, $L_2(H_1, H_2)$ for $H_1 \in \mathscr{B}_1$, $H_2 \in \mathscr{B}_2$. Let e be an edge of G, let (u_1, u_2) , (v_1, v_2) be its end vertices. Then there exists an edge u_1v_1 of G_1 and an edge u_2v_2 of G_2 . There exists exactly one graph $H' \in \mathscr{B}_1$ containing u_1v_1 and exactly one graph $H'' \in \mathscr{B}_2$ containing u_2v_2 and evidently the edge e belongs to $L_1(H', H'')$, then f joins vertices (u', u''), (v', v'') such that the edge u'v' belongs to H' and the edge u'v' belongs to H''. Hence \mathscr{B} is a bigraph decomposition of G. As $|\mathscr{B}| = 2|\mathscr{B}_1|$. $|\mathscr{B}_2| = 2b(G_1) b(G_2)$, the inequality from Theorem 1 holds.

If both G_1 , G_2 are complete bigraphs, then $b(G_1) = b(G_2) = 1$. Let A_1 , B_1 be the bipartition classes of G_1 , let A_2 , B_2 be the bipartition classes of G_2 . Then the weak product of G_1 and G_2 is the union of two vertex-disjoint complete bigraphs; one of them has the bipartition classes $A_1 \times A_2$, $B_1 \times B_2$, the other $A_1 \times B_2$, $B_1 \times A_2$. Hence the bigraph decomposition number of this weak product is 2 and the equality occurs; the bound cannot be improved. \Box

Theorem 2. There exist graphs G_1, G_2 such that for their weak product G the inequality $b'(G) < 2 b'(G_1) b'(G_2)$ holds.

Proof. Let $G_1 \cong K_3$, $G_2 \cong K_2$ (the complete graphs with 3 and 2 vertices). We have $b(G_1) = 2$, $b(G_2) = 1$ and thus $2 b(G_1) b(G_2) = 4$. But the weak product G of G_1 and G_2 is a circuit of length 6 and therefore b(G) = 3. \Box

Now we turn to the direct products of graphs. The direct product of the graphs G_1, G_2 is the graph G whose vertex set is $V(G_1) \times V(G_2)$ and in which two vertices $(u_1, u_2), (v_1, v_2)$ are adjacent if and only if either $u_1 = v_1$ and u_2, v_2 are adjacent in G_2 , or $u_2 = v_2$ and u_1, v_1 are adjacent in G_1 .

Theorem 3. Let G be the direct product of the graphs G_1, G_2 , without isolated vertices. Then

$$b(G) \leq |V(G_1)| b(G_2) + |V(G_2)| b(G_1)$$

and this bound cannot be improved.

Proof. For $u \in V(G_1)$ let $G_2(u)$ be the subgraph of G induced by the set of all vertices (u, x) for $x \in V(G_2)$. For $v \in V(G_2)$ let $G_1(v)$ be the subgraph of G induced

Then

by the set of all vertices (y, v) for $y \in V(G_1)$. These graphs will be called projections. Obviously all projections are edge-disjoint. We have $G_2(u) \cong G_2$, $G_1(v) \cong G_1$ for each u and v. The number of projections $G_2(u)$ (or $G_1(v)$) is $|V(G_1)|$ (or $|V(G_2)|$, respectively). If we take, in each $G_1(v)$, a bigraph decomposition of cardinality $b(G_1)$, and in each $G_2(u)$ a bigraph decomposition of cardinality $b(G_2)$, then the union of all these decompositions is a bigraph decomposition of G of cardinality $|V(G_1)| \ b(G_2) + |V(G_2)| \ b(G_1)$. This implies the inequality from Theorem 3.

Now let p, q be integers greater than 1. Let the vertex set of a graph G_1 be $V(G_1) = \bigcup_{i=1}^{2q} V_i$, where V_1, \ldots, V_{2q} are pairwise disjoint sets of cardinality p. Two vertices of G_1 will be adjacent if and only if one of them belongs to V_i and the other to V_{i+1} for some $i \in \{1, \ldots, 2q - 1\}$, or one of them to V_1 and the other to V_{2q} . The graph G_2 will be a graph isomorphic to G_1 . Let G be the direct product of G_1 and G_2 . For each $j \in \{1, \ldots, q\}$ let H_j be the subgraph of G_1 induced by the set $V_{2j-2} \cup V_{2j-1} \cup \cup V_{2j}$, where the subscripts are taken modulo 2q. Each H_j is a complete bigraph which is a subgraph of G_1 has so many edges as the graphs H_j ; hence $b(G_1) = b(G_2) = q$. We consider the bigraph decomposition of G as described above; it has $4pq^2$ bigraphs, each of which is isomorphic to the graphs H_j . Any complete bigraph which is a subgraph of G and is not contained in any projection is a star or a circuit of length 4 and therefore it contains at most 4p edges, which is less than or equal to the number $2p^2$ of edges of any H_j . Hence $b(G) = 4pq^2 = |V(G_1)| b(G_2) + |V(G_2)| b(G_1)$.

Theorem 4. There exist graphs G_1 , G_2 such that for their direct product G the inequality $b(G) < |V(G_1)| b(G_2) + |V(G_2)| b(G_1)$ holds.

Proof. Let $G_1 \cong G_2 \cong K_2$. Then $b(G_1) = b(G_2) = 1$. The direct product G of G_1 and G_2 is $K_{2,2}$, and therefore b(G) = 1. \Box

At the end we relate b(G) to the domination number of G. A dominating set in a graph G is a subset D of the vertex set V(G) of G with the property that for each $x \in V(G) - D$ there exists a vertex $y \in D$ adjacent to x. The minimum cardinality of a dominating set in G is called the domination number of G and denoted by $\delta(G)$.

Theorem 5. Let G be a graph without isolated vertices. Then

$$b(G) \geq \frac{1}{2} \delta(G)$$
.

Proof. Let \mathscr{B} be a bigraph decomposition of G consisting of b(G) graphs. In each graph $H \in \mathscr{B}$ we choose two vertices from distinct bipartition classes; then each vertex of H distinct from them is adjacent to one of them. The set of all chosen vertices for all $H \in \mathscr{B}$ is a dominating set in G and has at most 2 b(G) vertices. Hence $2 b(G) \ge \delta(G)$, which implies $b(G) \ge \frac{1}{2} \delta(G)$. \Box

Reference

[1] Problem Sessions. In: Graphs and Order. Proc. Conf. Banff 1984.

Souhrn

BIGRAFOVĚ ROZKLADOVÉ ČÍSLO GRAFU

Bohdan Zelinka

Bigrafově rozkladové číslo b(G) grafu G je minimální počet hranově disjunktních úplných sudých grafů, na něž lze rozložit graf G. V článku se zkoumá b(G) pro slabé součiny a direktní součiny grafů a porovnává se s dominačním číslem grafu G.

Резюме

ЧИСЛО БИГРАФОВОГО РАЗЛОЖЕНИЯ ГРАФА

BOHDAN ZELÍNKA

Числом биграфового разложения b(G) графа G называется минимальное число реберно непересекающихся полных двудольных графов, на которые можно разложить G. В статье число b(G) изучается для слабых произведений и прямых произведений графов и сравнивается с доминационным числом графа G.

Author's address: Katedra tváření a plastů VŠST, Studentská 1292, 461 17 Liberec 1.