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THERE EXISTS A PROLONGATION FUNCTOR 
OF INFINITE ORDER 

W. M. MIKULSKI, Krakow 

(Received November 20, 1986) 

Summary. An example of a prolongation functor of infinite order is given. 

Keywords: prolongation functor, order of prolongation functor. 

The concept of a natural bundle, which is due to A. Nijenhuis, originated the 
study of a wider class of geometric functors. A prolongation functor F in the sense 
of [3] is a covariant functor defined on the category Ji of all smooth finite dimension
al manifolds and smooth maps with values in the category &J4 of smooth fibred 
manifolds and their morphisms satisfying the following two Conditions: 
(1) The composition B o F of F with the base functor B: FM -> M is the identity 

on M. 
(2) If M e Obj Jt and i:U -+ M is the inclusion of an open subset, then Fi: FU -> 

-> nM
x(U) is an ^^-isomorphism, where nM: ^Ji -> Jl is the bundle projection 

ofFM. 
Let r be a natural number or infinity. A prolongation functor F is said to be of 

the order r if for any two manifolds M, N, any maps /, g: M -> N and any point 
xeM9 the condition fxf = fxg implies F/(y) = F g(y) for all points y e nM

x(x), 
and r is the smallest number with this property. 

The restriction of an arbitrary prolongation functor F to the subcategory Jin 

of ^-dimensional manifolds and their embeddings is a natural bundle in the sense 
of A. Nijenhuis. Here a well known result is, [1], that F | Jin has a finite order, 
provided FRn has a countable basis. 

By a recent description of a general class of geometric functors by means of Weil 
algebras, which is due to G. Kainz and P. W. Michor, [2], all product-preserving 
prolongation functors also have finite orders. 

Hence it seems to be interesting to discuss the following question: "Has any 
prolongation functor a finite order?" In this paper we give a counter-example of 
a prolongation functor of infinite order. 

I would like to thank Prof. I. Kolar for valuable suggestions and Dr. J. Slovak 
for correction. 

Example. A class of well known functors in differential geometry consists of the 
so-called r-th order tangent functors, which can be constructed as follows, see e.g. 
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[3]. Given an integer r ^ l and a manifold M, we set Tr*M = Jr(M, R) 0 (i.e. the 

set of all r-jets of M into R with target 0). One easily sees that Tr*M is a vector 

bundle with standard fibre J0(Rm, R)0, provided dim M = m. Let TrM be the dual 

vector bundle of Tr*M. Given any r-jet A e Jr

x(M, N)y, the composition of jets 

determines a linear map from the fibre (Tr*N)y over y e N into (Tr*M)x. Hence 

any smooth map / : M -> N induces a linear ^ # - m o r p h i s m Tr*f:flTr*N -> T r*M, 

where flTr*N means the pull-back of T r*N with respect to /. Then we define Trf: 

TrM -> T rN to be the dual map of T r*/and obtain an r-th order prolongation functor 

T r with values in the subcategory fffl c 3FM of smooth vector bundles. 

Now, put dk = dim ((TkRk)0). For any smooth manifold M we define FM to be 

the (formally infinite) fibred product over M 

FM = XM(AdkTkM), 
k^i 

and for any smooth map/: M -> N we define F/to be the fibre product of morphisms 

Ff = XM (AdkTkf): FM - FN. 
k^i 

Clearly, if k > dim M, then AdkTkM = M x {0}, so that we deal in fact with a finite 

fibred product over every manifold M. Hence F is a prolongation functor. 

A simple consideration shows that F is of infinite order. It is sufficient to deduce 

that the order of AdkTk is at least k. Let / : Rdk -> Rdk be defined by (xu ..., xdk) h-> 

h+(xk

u ..., xdk). Recalling that the map Tkf\(TkRdk)0 is dual to the map 

J:Jk(Rdk,R)0^Jk(Rdk,R)0, J(jk

0y)=jk

0(yof), we find (since f(jk

0(Xj)) = jk

0(xk)) 

that rank (T*/1 (TkRdk)0) = rank (f) = dk. Therefore Adk(Tkf\(TkRd%) 4= 0. But 

Jo" lf coincides with the (k — l)-jet of a constant map, which implies that the order 

QfAdkTk is at least k. 

References 

[1] D. B. A. Epstein, W. P. Thurston: Transformation groups and natural bundles, Proc. London 
Math. Soc. 38 (1979), 219-237. 

[2] G. Kainz, P. W. Michor: Natural transformations in differential geometгy. Czechoslovak 
Math. Ј. 37 (112) 1987, 584-607. 

[З] /. Kolář: Ғunctorial prolongations of Lie groups and their actions, Časopis p st. mat. 108 
(1983), 289-293. 

Souhrn 

PROLONGAČNI FUNKTOR NEKONEČNÉHO ŘÁDU EXISTUJE 

W . M . MlKULSKI 

Je podán příklad prolongačního funktoru nekonečného řádu. 
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Peзюмe 

ПPOДOЛЖAЮЩИЙ ФУHKTOP БECKOHEЧHOГO ПOPЯДKA CУЩECTBУET 

W . M . MlКULSКI 

Пpивeдeн пpимep пpoдoлжaющeгo фyнктopa бecкoнeчнoгo пopядкa. 

Authoґs address: Institute of Mathematics, Jagellonian Univeгsity, ul. Reymonta 4, Kгaków, 
Poland. 
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