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A GENERALIZATION OF THE LIONS-TEMAM COMPACT 
IMBEDDING THEOREM 

TOMAS ROUBICEK, Praha 

(Received August 29, 1988) 

Summary. The well-known theorem by J. L. Lions and R. Temam concerning the compact 
imbedding "of the space {ve Lp(0, T;B0); dv/dte L*(0, T; B{)} into Lp(0, T;B) is generalized 
to the case when B0 is a reflexive Banach space imbedded compactly into a normed linear space B 
that is continuously imbedded into a Hausdorff locally convex space B1? and 1 < p< + x , 
1 < <7< + x . Applications of such generalization to numerical analysis are outlined. 

Keywords: compact imbedding, evolution equations, locally convex spaces. 

AMS Subject Classification: Primary 46A50, Secondary 35K65, 65Mxx. 

In [ l ; Chap. V Thm. 5.1] and [2; Chap. Ill, Thm. 2.1] J. L. Lions and R. Temam 
posed the broadly applicable theorem concerning the compact imbedding of the space 

(i) W™(0, T; B0, В,) = ívє lf(0, T; B0) ; ~ є ü(0, T; вЛ 

into the space Lp(0, T; B), where B0 c B c Bx are three Banach spaces, B0, Bt are 
reflexive, the imbedding B0 cz B is compact and B c Bx is continuous, 1 < p < + oo, 
1 < q < +oc, and T > 0. This theorem is very powerful since Bx can be chosen 
arbitrarily large. The aim of this short note is to show that, in fact, it is sufficient 
to take for Bx even an arbitrary locally convex space with the only condition that its 
topology is a Hausdorff one. Besides, q may be equal to 1 or + oo and B need not be 
complete. At the end of this note some applications of such generalization will 
be briefly outlined. 

Let Bx be a locally convex pace, {| • | J leI being a collection of seminorms generating 
its topology (I is an index set). Let the seminorm | • \ql be defined by 

/ ( J T | v ( t ) | ? d 0 1 / g if l ^ q < + o o and 

\ e s s sup |v(t)|. if q = +oo . 
O ^ t ^ T 

Put L*(0, T;Bt) = {v: [0, T] -• Bt; v is Bochner integrable, \v\ql < +oo Vte/}. 
By endowing L*(0, T;BX) with a collection of the seminorms {|"j^}l6jj

 w e obviously 
get a locally convex space. As usual, we will understand a linear operator to be 
compact if it maps bounded subsets into precompact ones. 
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Theorem. Let B0 be a normed linear space imbedded compactly into another 
normed linear space B which is continuously imbedded into a Hausdorff locally 
convex space Bu and 1 ^ p < +00. If v, vt e LP(0, T; B0), ieN, the sequence 
{vi}ieN converges weakly to v in Lp(0, T; B0), and {dv,/dr}i6N is bounded in Lx(0, T; 
Bi), then {v? ieN converges to v strongly in Lp(0, T; B). 

Proof. First we will prove that V// > 0 3Jn e &{I) 3cn eRVue B0: 

(2) lltils^flHlSo + ^ L ^ H r . 
where IF (I) is the set of all finite subsets of I. Supposing the contrary, we get t] > 0 

such that VJeJ^(I) Vcefl 3uJceB0: ||iiJf||S ^ rj \\uJc\\
p
Bo + c L e J M f . Putting 

Wjc = W J C / | |M J C | | B O , we get: 

(3) | | >Vj c | | ^ ^ + cL 6 j |w j c | f , 

and also ||wjc||B g C, where C = supM+0||u||B/||u||Bo represents the norm of the 
imbedding operator B0 -• B. Hence £ l£j|wjc|f ^ Cp\c, and thus also |wJc|t ^ 
g Cc~l/p whenever te J. Thus limc-, + oo,j6.F(/) \WJC\I = 0 for every tel. Note that 
#"(I) and R are directed by the relations cz and g , respectively, and thus we can 
speak actually about the net {wJc) Je^{IhceR and about its possible limit. 

This net forms a precompact subset of B because it is bounded in B0 which is 
compactly imbedded into I3. Hence there is its subnet (denote it by same indices, 
for simplicity) such that wJc -> w strongly in B, where B denotes the completion 
of B (if B is a Banach space, then, of course, B = B). As the imbedding B cz Bt is 
continuous, each of the seminorms |*|. is uniformly continuous on B, and we may 
extend it continuously on 5, denoting the extension again by | ' | . , for simplicity. 
Therefore we have |wjc — w|. -> 0 for every tel. Clearly, we can write |w|d ^ 
= \wjc\i + |wjc — w\L. Passing to the limit, we get |w|, = 0 for every tel. Thus 
w = 0 because the topology of Bt has been supposed to be Hausdorff. In other 
words, wJr -> 0 strongly in B, which contradicts (3), thus proving (2). 

Without less of generality we may take v = 0. Let e > 0. As the sequence {v/]ieN 
is bounded in L\0, T; B0), we can take rj = e/(2 . sup,-6^||v,||^P(0 r .B o )) . Integrating 
(2) over [0, T] we get 

< в 

| |LP(0,T;B) = ~ + C 2 - í e J \Vi\pi 
2 

with some c e R and J e F(l) depending on E. The proof will be completed if we 
show that 

(4) l i m ^ \vi\p
pt = 0 for all tel . 

Clearly, \v\p
pl = j j / 2 |v,(r)|f dr + Jf/2 \v{t)\p dr and we may investigate only the 

first term, while the second can be treated analogously. For every s > 0 such that 
5 <> T/2 and every t e [0,T/2] we may write v,(r) = at(t) + b,(r), where 

1 rs rs /T \ d 
Vi(t + T) dT and 6,(r) = ( - - 1 ) — v,.(r + T) dT . 

0 Jo\s Jdt 
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Hence 
fT/2 /-T/2 fT/2 

\vtf,\>dt = 2 ' - ' | f l í(.)|f dí + 2 " " 1 |6,<í)|f dř = /, + /2 . 
Jo Jo Jo 

We can cstimate 

i'í*',Г(f.И)l^,+'Иd'-
d 
~7V> dř 

ЏФÍ 

ILP(0,T/2) 

where „*" denotes the convolution, i.e. [ / * g\ (t) = J / ( T ) g(f — T) dT, and i^s: R 
-> R is defined by 

r/s + 1 for - s <: t ^ 0 , 

, 0 elsewhere . 
m = 

The following estimates are wjll known: | | / * 0||LHR) = | |/ | |L-(R) ||0||L-(R)
 a n d 

| | / * g||L«(R) ̂  l|/||L>(*) IkllL-w A s 9 *~+f* 9 is a linear operator on Ll(R), we can 
obtain by interpolation (using the classical Riesz-Thorin convexity theorem) the 
estimate 

| | / * g | | L . ( R ) ^ | | / | | L t ( R ) | | g | | L , ( R ) . 

It yields the estimate 

dt 
*Ф* < 

LP(0,T/2) 

d 
Tv> dt Ш LP(R) 

LҶO.T/2+s) 

As ľa\\LP{R) <, sUp, we get 12 = 2p""1s|dv,/df|p£, and we see that I2 = 0(s) for 
s -> 0 because, by the assumptions, {dVijdt}ieN is bounded in L^O, T; Bx), hence 
particularly in the seminorm |*| lc. Thus the term I2 can be made arbitrarily small 
when taking s small enough. 

Now, let us take s > 0 fixed and investigate the term It. Since vt -> 0 weakly 
in Lp(0, T, B0), we can see that at(t) -> 0 weakly in B0 for every t, hence also strongly 
in B because the imbedding B0 a B is compact. Therefore also |ai(f)|p -• 0 because 
of the continuity of the imbedding B a B1# Obviously, the sequence {ilji6tf *s bounded 
in Lp(0, T; B0), hence also in l)(0, T; B), and we can estimate: 

IKOll^iriKí + T^dTá-N LҶ0,T;B) 

Using again the continuity of the imbedding B c: JB1? we see that also |«i(^)|p is 
bounded (independently of t and i), and we can employ the Lebesgue theorem to 
show the convergence of It = 2P~1 f j / 2 |a,;(f)|f df to 0 for i -> oo. Altogether we 
have proved (4). • 
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Let us consider the set Wp'\0, T; B0, Bt) from (l) endoved with the collection of the 
(semi)norms v h-> ||V||_P(O,T;B0)

 a n d v\-*\dvldt\ql, tel. It clearly makes WPA(0, T; 
B0, Bx) a locally convex space. Then the above theorem immediately offers a gener
alization of the Lions-Temam theorem. 

Corollary. Let the assumptions of Theorem above be fulfilled and, in addition, 
let B0 be reflexive, 1 < p < +00, and 1 _ q = +00. Then the imbedding 
Wp\0, T; B0, Bj) c Lp(0, T; B) is compact. 

Proof. As Lp(0, T; B) is a metric space with the completion Lp(0, T; B) (recall 
that B denotes the Banach space corresponding to B), we are only to show that every 
sequence {t\-}/eN, bounded in Wp'q(0, T;B0,B^), contains a subsequence converging 
(strongly) in Lp(0, T;B). Since B0 is reflexive and 1 < p < +00, Lp(0, T;B0) is 
reflexive as well, and thus there is a subsequence {vik keN converging weakly to some 
v e Lp(0, T; B0). As the sequence {dvik\dt}keN is bounded in L^O, T; Bx), it is bounded 
in L^O, T; Bt) as well. Thus we can use our theorem, which gives the strong conver
gence of {vik}keN even in Lp(0, T; B), hence in Lp(0, T; B), too. • 

To outline some applications in numerical analysis we consider, as a simple model 
example, the nonlinear parabolic equation describing e.g. a Stefan problem in the 
so-called enthalpy formulation (the notation will be standard): 

— = Aj8(z) on Q x (0, T) 
dt 

with an initial condition z(*, 0) = z0 and the Dirichlet boundary condition 
P(z(x, •)) = 0 for x G dQ, where dQ is the boundary of the Lipschitz domain Q 
and /?: R —> R is a nondecreasing continuous function. An approximate solution 
zh e L2(0, T; Vh) obtained after a spatial discretization of a finite-element type (h > 0 
denotes a mesh parameter) fulfils the identity: 

(5) (jtZh,v\ = (Vp(zh),Vv} 

for all v e Vh and a.a. t e [0, T] , where VA is a finite-dimensional subspace of the 
Sobolev space H0(Q), and <•, •> is the standard scalar product in l}(Q). Typically, 
Vhl c= Vhl for h! = h2 > 0 and UA>O Vh *s dense in H0(Q). Sometimes, e.g. if /J"1 

is not Lipschitz, we cannot estimate the time derivative of ft(zh) and we are forced 
to estimate the time derivative of zh. However, we cannot estimate it directly in the 
norm of L2(0, T; H_i(Q)) because we cannot test (5) by general functions v e Hl(Q). 
Nevertheless, putting v = v(t) e Vh with ||U||L-(O.T;HH«)) = 1 i n t o (5) and integrating 
it over the time interval [0, T] , we can estimate (under some additional assumptions) 
|JJ (dzhjdt9 v} dt\ = C with C independent of h. This yields the estimate of dzhfdt 
for every h = h0 in the seminorm [•|p4 with p = 2, 1 = h0, and \u\ho = 
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= sup {(u, v>; v e Vho, \\v\\HoHa) = 1}. As \Jh>0 Vh is dense in H0(G), the collection 

of the seminorms {|'|f,}/l>o generates a HausdorfT topology on B1 = H_1(:Q), hence 

our theorem can be readily employed with B0 = L2(:Q), B = H~l(Q), and p = q = 2. 

Acknowledgement. The author is indebted to Professor J. Necas for motivating 
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Souhrn 

ZOBECNĚNÍ LIONS-TEMAMOVY VĚTY O KOMPAKTNÍM VNOŘENÍ 

TOMÁŠ ROUBÍČEK 

Známá věta J. L. Lionse a R. Temama o kompaktním vnoření prostoru {ve Lp(0, T; B0); 
dv/d/ G L^O, T; Bx)} do Lp(0, T; B) je zobecněna pro případ, kdy B0 je reflexivní Banachův 
prostor, vnořený kompaktně do normovaného lineárního prostoru B, jenž je spojitě vnořen 
do Hausdorffova lokálně konvexního prostoru B1,al<p<+oo,l^ a< -f-cc.Je naznačeno 
užití takového zobecnění v numerické analýze. 

Резюме 

ОБОБЩЕНИЕ ТЕОРЕМЫ ЛИОНСА-ТЕМАМА О КОМПАКТНОМ ВЛОЖЕНИИ 

TOMÁŠ ROUBÍČEK 

Известная теорема Ж. Л. Лионса и Р. Темана о компактном вложении пространства 
{v е LP(0, Т; B0); dv/dř е L*(0, Т; Bx)} в Lp(0, Т;B) обобщается для случая, когда B0 рефлексив
ное банахово пространство, вложеное компактно в нормированное линейное пространство В, 
котороз вложено непрерывно в одделимое локально выпуклое пространство Bl9 и 1 < р < 
< + о ) , 1 5 ^ q<^ + оо. Указывается применение таково обобщения в вычислительном анализе. 

Authoťs address: Ústav teorie informace a automatizace ČSAV, Pod vodárenskou věží 4, 
CS-182 08Praha8. 
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