Commentationes Mathematicae Universitatis Carolinae

Václav Slavík
On the variety $\operatorname{Csub}(D)$

Commentationes Mathematicae Universitatis Carolinae, Vol. 32 (1991), No. 3, 431--434

Persistent URL: http://dml.cz/dmlcz/118423

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

On the variety Csub (D)

VÁclav Slavík

Abstract

The variety of lattices generated by lattices of all convex sublattices of distributive lattices is investigated.

Keywords: convex sublattice, variety
Classification: 06B20

0. Introduction.

Let L be a lattice. Denote by $\operatorname{Csub}(L)$ the lattice of all convex sublattices of L (including the empty set \emptyset). For a variety V of lattices, let $\operatorname{Csub}(V)$ denote the variety of lattices generated by $\{\operatorname{Csub}(L) ; L \in V\}$. In [4], it is shown that for any proper variety V of lattices, the variety $\operatorname{Csub}(V)$ is proper and that there are uncountably many varieties $\operatorname{Csub}(V)$.

The aim of this paper is to obtain some information about the least nontrivial such variety, i.e. about $\operatorname{Csub}(D)$, where D denotes the variety of all distributive lattices. We shall show that this variety is locally finite. The meet $\operatorname{Csub}(D)$ with the variety of all modular lattices will be described.

1. Preliminaries.

Any interval of a lattice L is a convex sublattice of L. Denote by $\operatorname{Int}(L)$ the lattice of all intervals of L (including \emptyset). Clearly, $\operatorname{Int}(L)$ is a sublattice of $\operatorname{Csub}(L)$. The one-element sublattices of a lattice L are just atoms of both $\operatorname{Int}(L)$ and $\operatorname{Csub}(L)$. If $I=[a, b]$ and $J=[c, d]$ are intervals of a lattice L, then we have in the lattice Csub (L)

$$
\begin{aligned}
& I \vee J=[a \wedge c, b \vee d] \text { and } \\
& I \wedge J=I \cap J=[a \vee c, b \wedge d] \text { or } \emptyset \text { if } a \vee c \not \equiv b \wedge d .
\end{aligned}
$$

One can show (by induction) that, for any lattice term p in k variables and any $A_{1}, \ldots, A_{k} \in \operatorname{Csub}(L)$ the following holds:

$$
p\left(A_{1}, \ldots, A_{k}\right)=\bigcup\left\{p\left(I_{1}, \ldots, I_{k}\right) ; \quad I_{j} \subseteq A_{j}, I_{j} \in \operatorname{Int}(L)\right\}
$$

Thus, for any variety V of lattices, $\operatorname{Int}(L) \in V$ iff $\operatorname{Csub}(L) \in V$. Especially, the variety $\operatorname{Csub}(V)$ is generated by $\{\operatorname{Int}(L) ; L \in V\}$ (see [4]).

Let L be a lattice and A be a sublattice of the lattice $\operatorname{Int}(L)$. If A has the least element that is not \emptyset, then the meet of any pair of elements from A is a non-empty interval of L and, clearly, the mapping h of A into $L^{*} \times L$, where L^{*} denotes the dual lattice of L, defined by

$$
h([a, b])=(a, b),
$$

is an embedding of A into $L^{*} \times L$.
Lemma 1. Let V be a self-dual variety V of lattices and $L \in V$ be a lattice. Then any dual ideal of $\operatorname{Int}(L)$ generated by an atom of $\operatorname{Int}(L)$ belongs to V.

Proof: Any dual ideal of $\operatorname{Int}(L)$ generated by an atom of $\operatorname{Int}(L)$ is a sublattice of $L^{*} \times L \in V$.

2. Locally finite varieties.

In this section, let V denote a locally finite (any finitely generated lattice in V is finite) self-dual variety of lattices.

Theorem 1. The variety $\operatorname{Csub}(V)$ is locally finite.
Proof: Let $d(n)$ denote the cardinality of the V-free lattice with n generators. Let $A \in V$ and let C be a sublattice of $\operatorname{Int}(A)$ generated by n elements. Then there exist atoms a_{1}, \ldots, a_{k} of the lattice $\operatorname{Int}(A), k \leq n$, such that $C \subseteq\{\emptyset\} \cup\left[a_{1}\right) \cup \cdots \cup\left[a_{k}\right)$. By Lemma 1, $\left[a_{i}\right) \in V$ and the cardinality of $C \cap\left[a_{i}\right)$ is at most $d(n)$. Thus the cardinality of C is at most $s(n)=1+n \cdot d(n)$. Since the variety $\operatorname{Csub}(V)$ is generated by $\{\operatorname{Int}(A) ; A \in V\}$ and for any $A \in V$ a sublattice of $\operatorname{Int}(A)$ with n generators has at most $s(n)$ elements, the variety $\operatorname{Csub}(V)$ is locally finite (see [3]).

Lemma 2. Let $L \in V$ be a lattice and let A be a finite sublattice of the lattice $\operatorname{Int}(L)$. Then A is a sublattice of $\operatorname{Int}(K)$ for some finite sublattice K of L.

Proof: Denote $M_{1}=\{x \in L ;[x, y] \in A$ for some $y \in L\}$ and $M_{2}=\{x \in L ;[y, x] \in$ A for some $y \in L\}$. The sets M_{1} and M_{2} are finite, the sublattice K of L generated by $M_{1} \cup M_{2}$ is finite and, clearly, A is a sublattice of $\operatorname{Int}(K)$.

For a class K of lattices, let $H(K), S(K)$, and $P(K)$ denote the class of all homomorphic images, sublattices, and direct products of members of K, respectively. For a class K, the variety generated by K is equal to $\operatorname{HSP}(K)$.
Theorem 2. Let $A \in V$ be a finite lattice. Then $A \in H S P(\operatorname{Int}(B))$ for some finite lattice $B \in V$. If A is subdirectly irreducible, then $A \in H S(\operatorname{Int}(B))$ for some finite lattice $B \in V$.

Proof: Since $A \in \operatorname{HSP}(\{\operatorname{Int}(L) ; L \in V\})$, there exist lattices $L_{i} \in V, i \in I$, a sublattice C of the product of $\operatorname{Int}\left(L_{i}\right), i \in I$, and a homomorphism f of C onto A. We can assume that C is finitely generated and so, by Theorem $1, C$ is finite. Thus we may suppose that I is finite. Let π_{i} denote the i-th projection of the product of $\operatorname{Int}\left(L_{j}\right), j \in I$, onto $\operatorname{Int}\left(L_{i}\right)$. For any $i \in I, \pi_{i}(C)$ is a finite sublattice of $\operatorname{Int}\left(L_{i}\right)$ and, by Lemma $2, \pi_{i}(C)$ is a sublattice of $\operatorname{Int}\left(B_{i}\right)$ for some finite sublattice B_{i} of L_{i}. We get that the lattice A belongs to $H S P\left(\left\{\operatorname{Int}\left(B_{i}\right) ; i \in I\right\}\right)$. It is easy
to show that for any pair of lattices $A, B, A \subseteq B \operatorname{implies} \operatorname{Int}(A) \subseteq \operatorname{Int}(B)$; thus $\operatorname{Int}\left(B_{i}\right), i \in I$ are sublattices of $\operatorname{Int}(B)$, where B is the product of all $B_{i}, i \in I$; hence $A \in \operatorname{HSP}(B)$. If A is subdirectly irreducible, then, since congruence lattices of lattices are distributive, $A \in H S(\operatorname{Int}(B))$ (see [1]).
Corollary 1. Let $A \in \operatorname{Csub}(V)$ be a finite subdirectly irreducible lattice. Then any dual ideal of A generated by an atom of A belongs to the variety V.
Proof: By Theorem 2, $A \in H S(\operatorname{Int}(B))$ for some finite lattice $B \in V$. Thus for any atom $a \in A$, the dual ideal $[a)$ of A generated by a is a homomorphic image of a sublattice of a dual ideal $[d)$ of $\operatorname{Int}(A), d \neq \emptyset$. By Lemma $1,[d) \in V$ and so $[a) \in V$, too.

3. The variety $\operatorname{Csub}(D)$.

Let D denote the class of all distributive lattices. The class D is a self-dual locally finite variety. Any finite distributive lattice is a sublattice of a finite Boolean algebra. Now we can reformulate the results of Section 2 as follows.
Theorem 3. The following assertions hold:

1. The variety $\operatorname{Csub}(D)$ is locally finite.
2. Let $A \in \operatorname{Csub}(D)$ be a finite subdirectly irreducible lattice. Then
(i) $A \in H S(\operatorname{Int}(B))$ for some finite Boolean algebra B;
(ii) for any atom $a \in A$, the dual ideal $[a)$ is a distributive lattice.

Since any locally finite variety is generated by its finite members, we can immediately obtain
Proposition 1. $\operatorname{Csub}(D)=H S P\left(\left\{\operatorname{Int}\left(B_{n}\right) ; n=2,3, \ldots\right\}\right)$, where B_{n} denotes the Boolean algebra with n atoms.

Let us remark that, for any $n \geq 2$, the lattice $\operatorname{Int}\left(B_{n}\right)$ is simple. Indeed, if α is a nontrivial congruence relation on $\operatorname{Int}\left(B_{n}\right)$, then there exist intervals I, J of B_{n} such that $I \subseteq J, I \neq J$ and $I \alpha J$. Let c be an element from $J \backslash I$. Then $([c, c] \cap I) \alpha([c, c] \cap J)$, i.e. $\emptyset \alpha[c, c]$. Let c^{\prime} be the complement of c. We can easily see that $\left[c^{\prime}, c^{\prime}\right] \alpha[0,1]$ and that $\left([x, x] \cap\left[c^{\prime}, c^{\prime}\right]\right) \alpha([x, x] \cap[0,1])$ for any $x \in B_{n}$. If $x \neq c^{\prime}$, we get $\emptyset \alpha[x, x]$. If $c \notin\{0,1\}$, then we have $\emptyset \alpha[0,0], \emptyset \alpha[1,1]$ and so $\emptyset \alpha[0,1]$. Now assume that $c \in\{0,1\}$. Let $b \in B_{n} \backslash\{0,1\}$. Then $\emptyset \alpha[b, b]$ and $\emptyset \alpha\left[b^{\prime}, b^{\prime}\right]$; hence $\emptyset \alpha[0,1]$.

An interesting problem is to describe the variety $\operatorname{Csub}(D) \cap M$, where M denotes the variety of all modular lattices. We shall show that this variety contains all finite lattices M_{n} having n atoms and $n+2$ elements. Since the lattice $M_{3,3}$ pictured in Fig. 1 belongs to any variety of modular lattices that is not a subvariety of the variety $\operatorname{HSP}\left(\left\{M_{n} ; n=1,2, \ldots\right\}\right)$ (see [2]) and, by Theorem $3, M_{3,3}$ does not belong to $\operatorname{Csub}(D)$, we can get the following result.

Theorem 4. $\operatorname{Csub}(D) \cap M=H S P\left(\left\{M_{n} ; n=1,2, \ldots\right\}\right)$.
To prove Theorem 4, it suffices to show that any lattice M_{n} is a sublattice of a lattice $\operatorname{Int}(B)$ for some finite Boolean algebra B.

Lemma 3. For any natural number $n \geq 2$, there exist subsets $A_{i}, B_{i}, i=1,2, \ldots, n$ of $S=\left\{1,2, \ldots, \frac{n}{2}(n+1)\right\}$ such that the following conditions hold:
(1) if $i \neq j$, then $A_{i} \cap A_{j}=\emptyset$ and $B_{i} \cup B_{j}=S$;
(2) $A_{i} \nsubseteq B_{j}$ iff $(i, j)=(n, 1)$ or $(i, j) \neq(1, n)$ and $i<j$.

Proof: By induction on n. Let $n=2$. Put $A_{1}=\{1\}, A_{2}=\{2\}, B_{1}=\{1,3\}$, $B_{2}=\{1,2\}$. Now suppose that $k \geq 2$ and $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{k}^{\prime}, B_{1}^{\prime}, \ldots, B_{k}^{\prime}$ are subsets of $T=\left\{1,2, \ldots, \frac{k}{2}(k+1)\right\}$ satisfying the conditions (1) and (2). Denote $s=\frac{k}{2}(k+1)$ and $A_{i}=A_{i}^{\prime} \cup\{s+i\}$ for $i=1,2, \ldots, k$ and $A_{k+1}=\{s+k+1\}$. Put $B_{1}=$ $T \backslash\{s+k+1\}$ and for all $i, 2 \leq i \leq k-1, B_{i}=B_{i}^{\prime} \cup\{s+1, \ldots, s+k+1\}, B_{k}=$ $B_{k}^{\prime} \cup\{s+2, \ldots, s+k+1\}$, and finally $B_{k+1}=\{1,2, \ldots, s+1\} \cup\{s+k+1\}$. One can easily verify that the sets A_{i}, B_{i} are subsets of $\left\{1,2, \ldots, \frac{k+1}{2}(k+2)\right\}$ satisfying the required conditions (1) and (2).
Proposition 2. For any natural number $n \geq 2$, the lattice M_{n} is a sublattice of $\operatorname{Int}(B)$ for some finite Boolean algebra B.

Proof: Denote by B the Boolean algebra of all subsets of the set $S=\{1,2, \ldots$, $\left.\frac{n}{2}(n+1)\right\}$. Let $A_{i}, B_{i}(i=1, \ldots, n)$ be subsets of S satisfying the conditions (1) and (2) of Lemma 3. Put $I_{i}=\left[A_{i}, B_{i}\right], i=1, \ldots, n$. Clearly, $I_{i} \in \operatorname{Int}(B)$ and for any pair $i, j, i \neq j, I_{i} \vee I_{j}=\left[A_{i} \wedge A_{j}, B_{i} \vee B_{j}\right]=[\emptyset, S]$. Since for any pair $i, j, i \neq j, A_{i} \nsubseteq B_{j}$ or $B_{i} \nsubseteq A_{j}$, we have $A_{i} \vee A_{j} \nsubseteq B_{i} \wedge B_{j}$; thus $I_{i} \wedge I_{j}=\emptyset$. We have showed that the intervals I_{1}, \ldots, I_{n} together with \emptyset and $[\emptyset, S]$ form a sublattice of $\operatorname{Int}(B)$ isomorphic to M_{n}.

Fig. 1: $M_{3,3}$

References

[1] Jónsson B., Algebras whose congruence lattices are distributive, Math. Scan. 21 (1967), 110121.
[2] Jónsson B., Equational classes of lattices, Math. Scan. 22 (1968), 187-196.
[3] Mal'cev A.I., Algebraičeskie sistemy (in Russian), Moskva, 1970.
[4] Slavík V., A note on convex sublattices of lattices, to appear.

College of Agriculture, Department of Mathematics, 16021 Praha 6, Czechoslovakia

