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Totality of colimit closures

Reinhard Börger∗, Walter Tholen

Abstract. Adámek, Herrlich, and Reiterman showed that a cocomplete category A is co-
complete if there exists a small (full) subcategory B such that every A-object is a colimit
of B-objects. The authors of the present paper strengthened the result to totality in the
sense of Street and Walters. Here we weaken the hypothesis, assuming only that the col-

imit closure is attained by transfinite iteration of the colimit closure process up to a fixed
ordinal. This requires some investigations on generalized notions of generators.

Keywords: cocomplete category, (almost-)E-generator, colimit closure, cointersection, total
category
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Introduction.

The main aim of this paper is to give sufficient criteria for totality (in the sense
of Street and Walters [13]) of a (cocomplete) colimit closure of a small category.
Adámek, Herrlich, and Reiterman [1] showed that such a category is complete if the
closure can be obtained in one step. The authors of the present paper proved that
such a category is even total (cf. [3]). Totality is a strong property of a category, it
always implies completeness and cocompleteness as well as compactness in the sense
of Isbell [7]. Here we generalize this result: a cocomplete category is total if it is
the colimit closure of a small subcategory and if this closure is attained after some
(small) ordinal number of steps (see 3.3 below). The latter condition is essential:
In 3.6 we give an example of a cocomplete colimit closure A of a small category
B such that A is not complete (hence not total); A even fails to have a terminal
object.
Our investigations clarify the relationship between different notions. Unfortu-

nately, we know no example of a category which satisfies the hypothesis of 3.3,
but not of our previous criterion. But this phenomenon is related to the following
fact of independent interest: if A is a colimit closure of some subcategory B and if
every extremal epimorphism in A is a composite of a chain of length α of regular
epimorphisms, then the colimit closure is attained at step α + 1. In particular, if
every extremal epimorphism is regular, then the closure is reached in two steps, i.e.
every A-object is a colimit of colimits of B-objects. But 3.3 can at least be used
to simplify totality proofs in some situations. For instance, it is easy to see that
every group is a codomain of a coequalizer of two homomorphisms of free groups,
hence the category of groups is the two-step cocompletion of {Z}. It seems more
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complicated to show that it is even the one-step cocompletion of {F}, where F is
the free group generated by two elements.
These investigations are closely related to some types of generators. In particular,

under mild conditions, a category A is a colimit closure of B ⊂ A if and only if the
object set |B| is a strong generator of A (see 2.8 below). If E is a class of morphisms,
a set G of objects is called an almost-E-generator if for every A-object A there exists
an E-morphism from some coproduct of G-objects to A. Similarly, G is called an
E-generator if this morphism can even be chosen as the “canonical” one, i.e. the
counit of a certain adjunction. Under a cancellation condition on E , both notions
coincide, but even in general there is a close relationship (see 1.2 below). Moreover,
almost-E-generators for certain classes E of strong epimorphisms are closely related
to colimit closures (see 2.2, 2.4, and 2.6 below). In 1.4 we give sufficient conditions
for the possibility of joining an E-generator to a single-object generator either by
coproduct or by direct product.

1. Generators.

In this section we shall investigate the relationship between certain types of
generators and categories which are colimit closures of small sets.
Since later we shall need coproducts anyway, we shall always assume existence

of small coproducts; sometimes one can weaken the hypothesis by assuming only
existence of certain coproducts.
Now consider a small set G ⊂ |A| of objects of some category A with coproducts.

For any A ∈ |A|, we form the coproduct

TA :=
∐

G∈G

A(G, A) · G,

where A(G, A) denotes the set of A-morphisms G −→ A, and A(G, A) · G is the
coproduct of A(G, A) copies of G. By εA : TA −→ A we denote the unique
morphism with εA · uf = f for all coproduct injections uf : G −→ TA (where
G ∈ G, f ∈ A(G, A)). Note that εA is a counit of an adjunction (cf. [5], 3.4).
Now let E be a class of A-morphisms containing all isomorphisms and closed

under composition with them. We call the above G an E-generator of A if εA ∈ E
for all A ∈ |A|. For E the class of all epimorphisms, an E-generator is simply
a generator; similarly, we use the term strong (regular resp.) generator when E
is the class of all extremal (regular resp.) epimorphisms. Note that our notion of
generator coincides with the usual one, i.e. G is a generator if and only if for all
pairs of parallel morphisms x, y : A −→ B we have x = y whenever xf = yf for all
f : G −→ A, G ∈ G.
There are other descriptions of E-generators when E has additional properties.

We particularly look at the following conditions on E :

(A) If ee′ ∈ E , then e ∈ E .
(B) If ee′ ∈ E and e′ ∈ E , then e ∈ E .
(C) If e ∈ E and q is split-epic, then eq ∈ E .

Obviously (A) implies (B); it also implies (C) because, for qs = 1, from eqs = e ∈
E we can conclude eq ∈ E by (A). The class of (extremal) epimorphisms always
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satisfies (A) (and hence (B) and (C)). For the class of regular epimorphisms we
always have (B) and (C), but not necessarily (A) (cf. [8]).

We call a set G of objects an almost-E-generator, if for every A ∈ |A| there exists
an E-morphism e :

∐
i∈I Gi −→ A with all Gi in G.

Proposition 1.2. Let A be a category with coproducts, and let E be a class of A-
morphisms containing all isomorphisms and closed under composition with them.
If E satisfies (B) and (C) above, then for any set G ⊂ |A| and the statements
(i),(ii),(iii) below the implications (i) ⇐⇒(ii) =⇒(iii) hold. If E satisfies even (A),
then all three statements are equivalent:

(i) G is an E-generator.
(ii) An A-morphism e belongs to E whenever all G ∈ G are projective with
respect to e.

(iii) G is an almost-E-generator.

Proof: (i)=⇒(ii) For any A-morphism e : A −→ B, consider the unique morphism
Te : TA −→ TB with Te · uf = vef for all f : G −→ A, G ∈ G, and the coproduct
injections uf as above and vh : G −→ TB (for h : G −→ B, G ∈ G). If all G ∈ G
are projective with respect to e, then Te is split-epic, hence e · εA = εB · Te ∈ E
by (C), and we get e ∈ E from (B).
(ii)=⇒(i) follows immediately from the fact that all G ∈ G are projective with

respect to εA (for A ∈ |A|). (i)=⇒(iii) is trivial.
(iii)=⇒(i) For e : C −→ A, C =

∐
i∈I Gi with Gi ∈ G, there always exists

a t : C −→ TA with e = εAt. Thus e ∈ E implies εA ∈ E , if E satisfies (A). �

1.3 From 1.2 we see that (i), (ii), (iii) are equivalent in the case of (extremal) epi-
morphisms. For E the class of regular epimorphisms, we call an almost-E-generator
also an almost-regular generator.

We can use 1.2 to show that an E-generator often gives, in two different ways,
rise to an E-generator with just one object (only the first of which seems to be
generally known):

Proposition 1.4. In a category A with coproducts, let G be an E-generator with
A(G, G′) 6= ∅ for all G, G′ ∈ G, where E satisfies (B) and (C). Then C :=

∐
G∈G G

is a (single-object) E-generator of A. If the product P :=
∏

G∈G G exists and E
satisfies even (A), then {P} is also an E-generator.

Proof: For each A ∈ |A|, the diagram

∐
G∈C A(C, A) · G -

g TA

?

∼=

?

εA

A(C, A) · C -

e
A
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commutes; here g is induced by the coproduct injections G −→ C, and e is the
canonical morphism. With the existence of arrows G −→ G′ one has that each
injection is split-monic, hence g is split-epic. Therefore, if εA belongs to E , also e

does. So {C} is an E-generator.
All product projections P −→ G are split-epic, hence also the first (canonical)

arrow in the diagram
∐

G∈G

A(G, A) · P −→ TA
εA−→ A.

Hence, by 1.2, {P} is an E-generator. �

Note that in the above proof P can even be replaced by any object having all
G ∈ G as retracts, regardless whether the product exists.

2. Colimit closures.

For a full subcategory B of a cocomplete category A, we define ΓB ⊂ A to be the
full subcategory of all small colimits of B-objects. Then ΓB is always closed under
coproducts, but not necessarily under coequalizers. So we may have to iterate Γ in
order to obtain a colimit-closed subcategory. We define Γ0B := B, Γα+1B := ΓΓαB
for every ordinal α, ΓλB :=

⋃
ξ<λ Γ

ξB for λ a limit ordinal or a fixed symbol

∞ with α < ∞ for all ordinals α. Then Γα+1B = ΓΓαB is always closed under
coproducts, while ΓλB is closed under finite colimits — in particular coequalizers
— for each limit ordinal λ. If ρ is a regular cardinal, then ΓρB is even closed under
colimits of diagrams of size < ρ. More generally, ΓαB is always closed under colimits
of diagrams of size less than the cofinality type of α (see [10] for the definition).
Finally, Γ∞B is closed under all colimits. Conversely, by transfinite induction on α

we see that ΓαB ⊂ C for any colimit-closed C with B ⊂ C ⊂ A. This gives Γ∞B ⊂ C,
hence Γ∞B is the colimit closure of B, i.e. the smallest colimit-closed subcategory
containing B.
Now let R be the class of regular epimorphisms of B (cf. [8]), and define Rα

for any ordinal α in the following way: R0 is the class of isomorphisms, for α > 0
a morphism e belongs toRα if there exist families of morphisms (eρ)ρ≤α and (qρ)ρ<α

such that the following conditions hold:

(i) e0 = 1, eα = e.
(ii) qξ ∈ R for all ξ < α.
(iii) eξ+1 = qξeξ for all ξ < α.
(iv) For any limit ordinal λ ≤ α, eλ is the cointersection (= generalized pushout)

of all eξ with ξ < λ.

This coincides with the definitions in 2.1 of [2].
By ΣB we denote the full subcategory of A whose objects are small coproducts

of B-objects. We obtain the following:

Proposition 2.2. If Y ∈ |ΓαB|, then there exist X ∈ |ΣB|, e : X −→ Y with
e ∈ Rα.

Proof: For α = 0, the statement is trivial. Now assume that the statement is true
for some α and let Y ∈ |Γα+1B|. Then Y is a small colimit of certain Zi ∈ |ΓαB|,
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where i ranges over some small set I. Now the usual construction of colimits from
coproducts and coequalizers renders a regular epimorphism q :

∐
i∈I Zi −→ Y .

Since Zi ∈ |ΓαB|, our induction hypothesis gives anXi ∈ |ΣB| and anRα-morphism
ei : Xi −→ Zi. But then e :=

∐
i∈I ei :

∐
i∈I Xi −→

∐
i∈I Zi is also in Rα, and∐

i∈I Xi ∈ |ΣB|. Now e ∈ Rα and q ∈ R give qe ∈ Rα+1, proving that the
statement is true for α+ 1.
Now let λ be a limit ordinal such that the statement is true for all ξ < λ. If

Y ∈ |ΓλB|, then Y ∈ |ΓξB| for some ξ < λ, and by induction hypothesis there exist

X ∈ |ΣB| and e : X −→ Y with e ∈ Rξ ⊂ Rλ. �

There is some kind of converse of the above result:

Proposition 2.3. Let |B| be a generator of A , let X ∈ |ΣB|, e : X −→ Y , with
e ∈ Rα. Then Y ∈ |Γα+1B|.

Proof: Since ΣB ⊂ ΓB, the statement is trivial for α = 0. Now assume that it
holds for some α. If X ∈ |ΣB|, e : X −→ Y, e ∈ Rα+1, let eξ (for ξ ≤ α + 1) and

qξ (for ξ ≤ α) be as in the definition of Rα+1. Then we have e = eα+1 = qαeα and

q := qα ∈ R, eα ∈ Rα. For the codomain Y ′ of eα, our induction hypothesis yields
Y ′ ∈ |Γα+1B|.
Since q is regularly epic and since |B| is a generator, q is the joint coequalizer of the

small family of all pairs (u, v), where u, v : B −→ Y ′, B ∈ |B| ⊂ |Γα+1B|, qu = qv.

This yields Y ∈ |ΓΓα+1B| = |Γα+2B|, proving that the statement holds for α+ 1.
Now let λ be a limit ordinal and assume the statement to be true for all ξ < λ.

For X ∈ |ΣB| and e : X −→ Y with e ∈ Rλ, let eξ : X −→ Yξ (ξ ≤ λ) be

as in the definition of Rλ. Then we have X ∈ |ΣB| ⊂ |ΓλB|. For ξ < α we

have eξ ∈ Rξ , hence our induction hypothesis yields Yξ ∈ |Γξ+1B| ⊂ |ΓλB|. Since
eλ = e : X −→ Y is the small cointersection of all eξ : X −→ Yξ with ξ < α, it

follows that Y ∈ |ΓΓλB| = |Γλ+1B|. This proves the statement for λ. By transfinite
induction, it holds for all α. �

Corollary 2.4. If |B| is an almost-Rα-generator, then Γα+1B = A.

Proof: Since all morphisms in Rα are epic, |B| is a generator. Then for any
Y ∈ |A|, we can apply 2.3 for suitable X, e. �

Corollary 2.5. Assume that B is a strong generator and all extremal epimorphisms
belong to Rα. Then Γα+1B = A.

�

A closer look at the initial step of the inductions of 2.2 and 2.3 leads to the
following:

Corollary 2.6. Let B be a small subcategory of a cocomplete category A. Then
|B| is an almost-regular generator if and only if ΓΣB = A.

�

2.7 Now we study the question of when a category A is the colimit closure
Γ∞B of a small subcategory B. For e ∈ A(X, Y ), A ∈ |A| we write e⊥A if
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A(A, e) : A(A, X) −→ A(A, Y ) is bijective. We define the co-orthogonal closure
∧
B of a subcategory B to be the subcategory of all A ∈ |A| satisfying

(∀B ∈ |B| : e⊥B) =⇒ e⊥A

for all A-morphisms e. Note that e⊥A holds for all A ∈ |A| if and only if e is
invertible. Thus a category A is a co-orthogonal closure of some subcategory B, if
and only if every morphism e with e⊥B for all B ∈ |B| is an isomorphism.
Our next result is essentially known (cf. [9, Prop. 3.4.0] or [11, Cor. 2.1 d]), but

we include it in order to clarify the relationship between the above notions.

Theorem 2.8. For (i), (ii), (iii) below the implication (i)=⇒(ii) holds. If every A-
morphism admits an (extremal-epi, mono) factorization then also (ii)=⇒(iii) holds.
If, moreover, there exists an α, such that Rα contains all strong epimorphisms, then
all three statements are equivalent:

(i) A is the colimit closure of B.
(ii) A is the co-orthogonal closure of B.
(iii) |B| is a strong generator in A.

Proof: (i)=⇒(ii) follows immediately from the well-known (and easily established)

fact that the co-orthogonal closure B̂ is always closed under all existing (even large)
colimits.
(ii)=⇒(iii) Consider an (extremal-epi, mono)-factorization εA = me for any A ∈

|A|. We easily see m⊥B for all B ∈ |B|, hence m is an isomorphism by (ii), and
therefore εA is extremally epic.
(iii)=⇒(i) If Rα contains all extremal epimorphisms, then the result follows

from 2.5. �

2.9 In 2.8, the condition about α cannot be omitted. Indeed, {A0} is a strong
generator in the category C∞ mentioned in 3.5 (3) of [2], but the colimit closure A
of {A0} consist of all (A, (ϕν)ν≤∞) with ϕ∞ nowhere defined. One easily sees that
A has no terminal object. In particular, a terminal object of C∞ (e.g. ({0}, (ϕ0))
with ϕν(0) = 0 for all ν ≤ ∞) does not belong to A, hence A 6= C∞. A similar
example is given in [5, Remark 3.6.3].

3. Totality.

In this section, we shall apply the above results to obtain sufficient criteria for
totality of a category A. Here A is called total [13] if the Yoneda embedding
A −→ [A,Set] has a left adjoint (disregarding the size of [A,Set]). This can be
equivalently expressed by saying that a functor H : D −→ A admits a colimit
whenever A(A, H−) has a colimit in Set. Every total category is cocomplete but
also complete ([9]) and existence of pullbacks yields that all extremal epimorphisms
are strong. Moreover, a total category always has all (possibly large) cointersec-
tions of regular epimorphisms ([4, 4.1]), but not neccessarily of strong epimorphisms
([4, 4.3]). It need not have a generator([4, 4.2]). Our investigations are based on
the following criterion ([4, Thm. 5.2]) which generalizes a result of [6]:
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Theorem 3.2. Assume that A is complete admits large cointersections of E-
morphisms and has an almost-E-generator for some E which contains all split-
epimorphisms. Then A is total.

�

Our first result strengthens [1, Thm. 2] and [4, Thm. 5.5]:

Theorem 3.3. If A = ΓαB is a cocomplete category for some ordinal α and some
small B ⊂ A, then A is total, and |B| is a strong generator of A.

Proof: By 2.2, |B| is an almost-Rα-generator, in particular a generator. Therefore,
A is cowellpowered with respect toR [12]. Consequently, the cocomplete categoryA
admits all cointersections of R-morphisms, hence of Rα-morphisms by 2.2 of [2]. If
α ≥ 1, then Rα contains all split-epimorphisms, and we can apply 3.2. If α = 0,
then A = B is small and cocomplete, hence essentially a small complete lattice, and
the result is trivial. �

Theorem 3.4. Let A be a cocomplete category admitting all colimits of all chains
of regular epimorphisms. Let B ⊂ A be small and assume that A is the smallest
subcategory that contains B and is closed under small colimits and under colimits
of chains of regular epimorphisms. Then A is total and admits cointersections of
strong epimorphisms. Moreover, |B| is a strong generator of A.

Proof: By 1.1 (2) and 3.4 of [2], A admits cointersections of extremal epimor-

phisms. The co-orthogonal closure
∧
B ⊂ A is even closed under all existing (possibly

large) colimits; particularly under colimits of chains. Therefore, we get
∧
B = A, and

|B| is a strong generator by 2.8. Thus A is total by 3.2. �

Our next result partly strengthens Theorem 4 of [1]:

Theorem 3.5. Let A be a cocomplete category, which is the colimit closure of
a small subcategory. Assume that Rα contains all extremal epimorphisms for
some α. Then A is total and admits cointersections of strong epimorphisms, and
|B| is a strong generator of A.

Proof: Since A is cocomplete, it follows from 1.1.2 and 2.5 of [2] that A admits
all cointersections of Rα-morphisms, i.e. of extremal epimorphisms. By 2.2, |B| is
a strong generator, and from 2.5 we conclude A = Γα+1B. Now we can apply 5.3.

�

3.6 In 3.2. the condition ΓαB = A cannot be weakened to Γ∞B = B, i.e. in 3.4 the
existence of colimits of chains of regular epimorphisms is essential, and in 3.5 we
cannot weaken the hypothesis about strong epimorphisms to the statement that the
class of strong epimorphisms is the union of all Rα. Indeed, the colimit closure A of
{Ao} in C∞ from 3.5 of [2] is cocomplete and every extremal epimorphism belongs to
some Rα. Since A has no terminal object, it is not complete and therefore not total.
Moreover, {Ao} is a strong generator in A, but A does not have an almost-regular
one. Indeed, existence of a generator implies that A is cowellpowered with respect
to regular epimorphisms. Thus A has cointersections of regular epimorphisms by
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cocompleteness. Now the existence of an almost-regular generator would imply
totality by 5.2. A similar example is furnished by [4, Remark 4.4 (3)].
Note that the hypothesis of 3.5 implies that one of 3.4 since the existence of

colimits of chains of regular epimorphisms follows from 3.4 of [2]. But we do not
know whether the hypothesis of 3.3 always implies the existence of cointersections
of strong epimorphisms.
We conclude with another problem: Does every total category with a regular

generator admit cointersections of strong epimorphisms?
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