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Cantor-connectedness revisited

R. Lowen

Abstract. Following Preuss’ general connectedness theory in topological categories, a con-
nectedness concept for approach spaces is introduced, which unifies topological connected-
ness in the setting of topological spaces, and Cantor-connectedness in the setting of metric
spaces.
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1. Introduction.

Applying G. Preuss’ general theory of connectedness in topological categories
[19], [20], we show that connectedness in TOP and Cantor-connectedness in p-
MET∞ [3], are instances of a unifying concept of connectedness inAP, the category
of approach spaces [14]. AP is a topological category in which both TOP and p-
MET∞ are embedded as full isomorphism-closed subcategories.
One of the advantages of the category of approach spaces is that it makes the

relationship between topological spaces and metric spaces considerably nicer. An
uncountable product of metrizable topological spaces need not be metrizable and
a countable product is metrizable only by ad-hoc procedures. In AP every product
of metric spaces is canonically endowed with an approach structure, i.e. a point-set
distance rather than a point-point distance. This structure then has as TOP-
coreflection precisely the product topology. For details concerning this we refer to
[14], [12]. The category of approach spaces also seems to be the right setting for
the work of E.V. Sčepin and I. Isiwata [9], [21] on generalizations of metrizability.
In [13] we showed that AP allowed for a categorically right formulation of C. Ku-
ratowski’s concept of measure of compactness [11], and in [15] we showed that it
was also relevant to concepts predominantly used in approximation theory. Apart
from unifying different types of connectedness we now also show that there exists
a measure of connectedness not unsimilar to the measure of compactness and which
may be useful in fixpoint theory [4], [6], [5], [10].

2. Approach spaces.

The purpose of this section is to recall those basic concepts introduced in [14]
which are required for this paper.
Let X be an arbitrary set, P = [0,∞] and P0 = ]0,∞]. A map

δ : X × 2X → P
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is called a distance if it fulfills

(D1) ∀A ∈ 2X , ∀x ∈ X : x ∈ A ⇒ δ(x, A) = 0,
(D2) ∀x ∈ X : δ(x, ∅) =∞,
(D3) ∀A, B ∈ 2X , ∀x ∈ X : δ(x, A ∪ B) = δ(x, A) ∧ δ(x, B),

(D4) ∀A ∈ 2X , ∀x ∈ X , ∀ ε > 0 : δ(x, A) ≤ δ(x, A(ε)) + ε

where A(ε) = {x | δ(x, A) ≤ ε}.
Functions giving distances between points and sets were also already considered

by E.V. Sčepin [21] and I. Isiwata [9] in studies on generalizations of metrizability.
A set equipped with a distance is called an approach space. Given approach

spaces (X, δ) and (X ′, δ′) a map f : X → X ′ is called a contraction if

(C) ∀A ∈ 2X , ∀x ∈ X : δ′(f(x), f(A)) ≤ δ(x, A).

In [14] we showed that approach spaces and contractions determine a topological
category in the sense of H. Herrlich [7]. We denote this category AP. TOP is
embedded as a full isomorphism-closed, bireflective and bicoreflective subcategory
by

TOP → AP

(X, T ) → (X, δT )

f → f

where

δT (x, A) =

{

0 if x ∈ A

∞ if x /∈ A

and this for all x ∈ X , A ⊂ X .
Given an approach space (X, δ), its TOP-coreflection is given by (X, Tδ) where

Tδ is the topology with closure operator

A = {x | δ(x, A) = 0}

for all A ⊂ X .
Analogously p-MET∞, the category of all extended pseudo-metric spaces and

non-expansive maps, is embedded as a full isomorphism closed bicoreflective sub-
category by

p-MET∞ → AP

(X, d) → (X, δd)

f → f

where

δd(x, A) = inf
a∈A

d(x, a)

and this for all x ∈ X , A ⊂ X .
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Given an approach space (X, δ), its p-MET∞-coreflection is given by (X, dδ)
where

dδ(x, y) = δ(x, {y}) ∨ δ(y, {x})

for all x, y ∈ X .
When required, we shall denote the TOP-coreflection of a space X by cT(X)

and the p-MET∞-coreflection by cM(X).

3. Connectedness in AP.

Given a topological category C and a class D of C-objects then following G. Preuss
[19], [20] we say that X ∈ |C| is D-connected if all morphisms in

⋃

D∈D Hom(X, D)
are constant.
The following proposition is clear.

Proposition 3.1. If C is a topological category and D is a set of C-objects then
D-connectedness coincides with {

∏

D∈D D}-connectedness. �

In the sequel, if D = {D} we write D-connected for D-connected. We recall the
following theorem from G. Preuss [20]. The terminology used in this theorem is
mainly due to A. Arhangel’skii and R. Wiegandt [1].

Proposition 3.2 (Preuss). If C is a topological category and D is a class of C-
objects then the full subcategory c(D) consisting of all D-connected objects fulfills
the following properties:

(1) c(D) is morphism-closed i.e. if X ∈ |c(D)|, Y ∈ |C| and f ∈ Hom(X, Y ) then
f(X) ∈ |c(D)|,

(2) c(D) is second-additive i.e. ifX ∈ |c(D)| and (Xj)j∈J is a family of subspaces

ofX with non-empty intersection and such that each of them is D-connected
then

⋃

j∈J Xj is D-connected,

(3) c(D) contains all one-point spaces. �

Proposition 3.3. Under the same conditions as the foregoing proposition c(D) is
quotient-reversible i.e. if Y ∈ |c(D)|, X ∈ |C|, f ∈ Hom(X, Y ) is a quotient-map
and f−1({y}) ∈ |c(D)| for all y ∈ Y then X ∈ |c(D)|.

Proof: Consider the following diagram

X -g
D

6
i

@
@@

w
f

6h

Fy -
ŷ

Y

where D ∈ D, g is a given morphism, y ∈ Y , Fy stands for f−1({y}), ŷ is the
obvious constant map and i is the canonical embedding. Since Fy ∈ |c(D)|, g is
constant on Fy for each y ∈ Y . Thus there exists a factorization h which, since
Y ∈ |c(D)|, is also constant. Consequently g is constant and we are done. �

Now let us turn to the case of approach spaces. In the sequel, given (X, δ) ∈ |AP|,
an overline will denote closure in the TOP-coreflection of (X, δ), i.e. x ∈ A iff
δ(x, A) = 0.
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Proposition 3.4. If E is a class of approach spaces such that for each (E, δE) ∈ E ,
its TOP-coreflection is T1, if moreover X ∈ |AP|, Y ⊂ Z ⊂ Y ⊂ X and Y is
E-connected, then Z is E-connected.

Proof: Let (E, δE) ∈ E and let f ∈ Hom(Z, E). Then there exists e ∈ E such
that f(Y ) = {e}. If z ∈ Z then δ(z, Y ) = 0 which implies δE(f(z), {e}) = 0, i.e. f
is constant, and we are done. �

Theorem 3.5. If E has the properties required in the foregoing proposition then
a product of AP-objects is E-connected if and only if each factor is E-connected.

Proof: The only-if-part follows from 3.2. (1), and the if-part follows from 3.2. (2)
and 3.3 in virtually the same way as in TOP. �

Remark 3.6. Spaces fulfilling the conditions of the foregoing proposition are in
particular T0-approach spaces according to T. Marny [16]. Indeed, if a space X ∈
|AP| has a T1 TOP-coreflection then for any two-point indiscrete object I ∈ |AP|,
Hom(I, X) only contains constant functions.

We now consider the following set D of extended metric spaces. For each α ∈ P0,
let Dα be the two-point space {0,∞}, equipped with the extended metric dα where
dα(0,∞) = α. Further let (D, δD) stand for the AP-product of the spaces Dα. We
recall that then for any x ∈ D, A ⊂ D we have

δD(x, A) = sup
P∈2P0

P finite

inf
a∈A
sup
α∈P

dα(prα(x), prα(a)).

Since P0 is infinite we know that (D, δD) is not metric [14].

An object in AP which is D-connected (or D-connected) shall simply be called
connected. The full subcategory of AP with objects all D-connected spaces shall
be denoted c-AP. Clearly all results proved in this section as well as results in the
general theory of G. Preuss are valid for this concept of connectedness.

4. Cantor-connectedness and topological connectedness.

Cantor’s definition of connectedness (nowadays more often referred to as uniform
connectedness) goes back to 1883 [3]. He originally defined this concept with so-
called ε-chains, where ε > 0. Given two points x, y in a metric space, an ε-chain
connecting these points is a finite set {x1, x2, . . . , xn} such that x1 = x, xn = y
and d(xi, xi+1) ≤ ε for all i ∈ {1, . . . , n − 1}. Cantor then defined X to be chain-
connected if any two points can be ε-chain connected for any ε > 0. It is easily seen
that this is equivalent to saying that there does not exist a subset A of X such that
d(A, X \ A) > 0 (see e.g. H. Herrlich [8]).

Theorem 4.1. If (X, d) ∈ |p-MET∞| then the following are equivalent:

(1) (X, d) is Cantor-connected,
(2) (X, δd) ∈ |c-AP|.
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Proof: To see that (1) ⇒ (2) let (X, δd) be not connected. Then there exists
α ∈ P0 and a contraction f : X → Dα which is not constant. Put X0 = f−1({0})
and X∞ = f−1({∞}). It is immediately verified that d(X0, X∞) ≥ α and thus
(X, d) is not Cantor-connected.
To see that (2)⇒ (1) let (X, d) be partitioned inX0 andX∞ such that d(X0, X∞)

≥ α for some α > 0. It is immediately verified that the map f : X ⇒ Dα, defined
by f(X0) = {0} and f(X∞) = {∞}, is a contraction, and thus (X, δd) is not con-
nected.

�

Theorem 4.2. If (X, T ) ∈ |TOP| then the following are equivalent:

(1) (X, T ) is connected,
(2) (X, δT ) ∈ |c-AP|.

Proof: To see that (1) ⇒ (2) let (X, δT ) be not connected. Then there exists
α ∈ P0 and a contraction f : X → Dα which is not constant. Put X0 = f−1({0})
and X∞ = f−1({∞}) and let x ∈ X0. Then α ≤ δT (x, X∞) and thus x /∈ X∞,
which proves that both X0 and X∞ are open and thus (X, T ) is not connected.
To see that (2) ⇒ (1) let X be partitioned in the open sets X0 and X∞. Then

it is immediately verified that for any α ∈ P0, the map f : X ⇒ Dα, defined by
f(X0) = {0} and f(X∞) = {∞}, is a contraction and thus (X, δd) is not connected.

�

The foregoing results prove that the connectedness inAP unifies Cantor-connect-
edness for metric spaces and connectedness for topological spaces.

5. Measure of connectedness.

Measures of compactness are useful tools in e.g. theory of operator equations and
in fixed point theory [2], [4]. Two such measures are Kuratowski’s measure [11],
and a rather more used variant, the so-called Hausdorff measure.
In [13] we showed that these measures can be recaptured as canonical concepts

in AP. In this section we want to show that it is very easy to extend Kuratowski’s
ideas to connectedness.
Given an approach space (X, δ) we define the measure of connectedness of (X, δ)

as
conn(X) = inf{α ∈ P | X is Dδ-connected}.

From this definition it follows immediately that a space is connected iff conn(X) = 0.
Also it is worthwhile to notice that for any α ∈ P0, we have conn(Dα) = α, and so
this measure, even when restricted to p-MET∞, takes on all possible values.

Theorem 5.1. If X ∈ |AP|, Y ∈ |AP| and f ∈ Hom(X, Y ) then:

(1)
conn(f(X)) ≤ conn(X),

(2) if (Xj)j∈J is a family of subspaces of X with non-empty intersection then

conn
(

⋃

j∈J

Xj

)

≤ sup
j∈J
conn(Xj),
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(3) if f is a quotient map then

conn(X) ≤ conn(Y ) ∨
(

sup
y∈Y
(f−1(y))

)

.

Proof: In all cases, the proof is obtained by considering spaces which occur on
the right hand side of an inequality and supposing that for some α ∈ P they are
Dα-connected. An application of foregoing results then allows one to conclude that
the space on the left hand side is also Dα-connected. �

Trivial examples show that all inequalities in the foregoing theorem are strict in
general.

Theorem 5.2. If (Xj , δj)j∈J is a family of approach spaces then

conn
(

∏

j∈J

Xj

)

= sup
j∈J
conn(Xj).

Proof: For any X ∈ |AP| let us put

K(X) = {α ∈ P | X is Dα-connected}.

Then obviously K(X) is an unbounded interval in P. From this and upon applying
3.5 we obtain

conn
(

∏

j∈J

Xj

)

= inf K
(

∏

j∈J

Xj

)

= inf
⋂

j∈J

K(Xj)

= sup
j∈J
conn(Xj)

and we are done. �

Applying the foregoing results to the special case of topological spaces of course
gives all well known invariance properties of topological connectedness. In the
same way applying them to p-MET∞, and keeping in mind that p-MET∞ is
coreflectively embedded in AP, we obtain the following corollary.

Corollary 5.3. If X ∈ |p-MET∞|, Y ∈ |p-MET∞| and f : X → Y is non-
expansive then:

(1) if X is Cantor-connected, then Y is Cantor-connected,
(2) if (Xj)j∈J is a family of Cantor-connected subspaces of X with non-empty
intersection then

⋃

j∈J Xj is Cantor-connected,

(3) if Y is Cantor-connected, f : X → Y is a quotient map and f−1({y}) is
Cantor-connected for each y ∈ Y , then X is Cantor-connected. �
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Examples 5.4. (1) It is well-known that Q equipped with its usual metric is
Cantor-connected and thus conn(Q) = 0. If we take the TOP-coreflection, i.e. Q

equipped with its usual topology then it is no longer connected and so conn(cT(Q))
= ∞. The converse situation of course cannot occur since (in AP) a topological
space is endowed with a finer structure than any metric which underlies it.

(2) An interesting (“genuine”) approach structure on P is given by

δ(x, A) =











infa∈A |x − a| if x < ∞

0 if x =∞, supA =∞

∞ if x =∞, supA < ∞.

Although the Alexandroff compactification of [0,∞[ is metrizable, it is of course not
metrizable by a metric which extends the usual metric. Now δ is the unique distance
which does extend this metric and which moreover “distancizes” the Alexandroff
topology on P, i.e. which is such that its TOP-coreflection coincides with it. As for
connectedness we have conn(P) = 0 since δ is finer than the Alexandroff topology,
but conn(cM(P)) =∞ since for the p-MET∞-coreflection the point∞ is at distance
∞ of all other points.
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