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Dimensional compactness in biequivalence vector spaces

J. Náter, P. Pulmann and P. Zlatoš

Abstract. The notion of dimensionally compact class in a biequivalence vector space is
introduced. Similarly as the notion of compactness with respect to a π-equivalence reflects
our nonability to grasp any infinite set under sharp distinction of its elements, the notion
of dimensional compactness is related to the fact that we are not able to measure out
any infinite set of independent parameters. A fairly natural Galois connection between
equivalences on an infinite set s and classes of set functions s → Q is investigated. Finally,
a direct connection between compactness of a π-equivalence R ⊆ s2 and dimensional
compactness of the class C[R] of all continuous set functions from 〈s, R〉 to 〈Q,

.
=〉 is

established.
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1. Introduction.

The present paper is a contribution to the topic of biequivalence vector spaces
(BVS) initiated in [Sm–Z 1991] as a counterpart to classical topological vector spaces
within the framework of alternative set theory (AST). Most of the results stated
below were announced in [Z 1989]. Besides of [Sm–Z 1991], the reader is assumed
to be acquainted with the AST in an extent covered by [V 1979] and with some
basic notions and facts concerning biequivalences and continuous functions which
can be found in [G–Z 1985]. Throughout the paper the terminology and notation
of [Sm–Z 1991], the latter subject to some minor selfexplanatory changes, will be
used.

The central position in the paper is due to the notion of a dimensionally compact
class in a BVS and to its connection to the notion of indiscernibility equivalence.
To explain what goes on, let us recall that the AST-counterpart of a classical

topological space can frequently be represented as a pair 〈s, R〉 where s is a set and
R is an indiscernibility equivalence, i.e., a compact π-equivalence on s. The notion
of compactness is motivated by the empirical fact that one cannot grasp perfectly
any infinite set in its totality within distinction among all of its elements; whenever
an infinite set is observed, some couple of its elements occurs indiscernible. Thus an
equivalence R ⊆ s2 is said to be compact on a class X ⊆ s if there is no infinite set
u ⊆ X of pairwise discernible elements; R is called compact if it is compact on s.
Similarly, the notion of dimensional compactness reflects the property of real

measurement that we are not able to measure out an actually infinite set of really
independent parameters; whenever an infinite number of measurements is carried
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out, some dependence between their values occurs. This leads us to the following
definition.
Let 〈W, M, G〉 be a BVS. A class A ⊆ W will be called dimensionally compact (in

〈W, M, G〉) if each independent set w ⊆ A is finite. (For the notion of independence
in a BVS see [Sm–Z 1991, Section 8]).
Now, assume that various numerical parameters or characteristics of objects

forming an infinite set s are measured. Such parameters can be considered as set
functions f : s → Q. Given a class of such parameters A ⊆ Qs, one can naturally
call two objects x, y ∈ s A-indiscernible if f(x)

.
= f(y) for all f ∈ A. Obviously

T[A] = {〈x, y〉 ∈ s2; (∀ f ∈ A)(f(x)
.
= f(y))}

is an equivalence on s for each A ⊆ Qs. Moreover, T[A] is the coarsest one among
the equivalences R on s such that each f ∈ A is “continuous” with respect to R in
the sense that 〈x, y〉 ∈ R implies f(x)

.
= f(y) for all x, y ∈ s.

On the other hand, if R is an equivalence on s, then we can consider the class

C[R] = {f ∈ Qs; (∀x, y ∈ s)(〈x, y〉 ∈ R ⇒ f(x)
.
= f(y))}

of all functions continuous with respect to R, i.e. the class of all continuously varying
numerical characteristics of objects from s.
Intuitively it is clear that there should be some connection between compactness

of the equivalence R and dimensional compactness of the class C[R] ⊆ Qs, provided
a suitable BVS structure on Qs is introduced. We will show that this is really the
case.
Of course, on the Sd-class Qs the structure of a vector space over the field Q

of all rationals is defined componentwise. Sometimes we will also utilize the fact
that Qs even is a linear algebra over Q under componentwise multiplication. In
most cases the relevant BVS structure on Qs will be of the form 〈Qs, IQs, BQs〉.
This convenient restriction is justified by our present subject, because, as shown in
[G–Z 1985], all “reasonable” π-equivalences which can be introduced on Qs coincide
with the π-equivalence

.
=s, given by

f
.
=s g ⇔ (∀x ∈ s)(f(x)

.
= g(x)),

when restricted to classes of the form C[R].

2. Compactness and dimensional compactness.

Throughout the paper s denotes a fixed set; to avoid trivialities we assume that
s is infinite. Let us start with the following four lemmas which will be needed in
further proofs.

Lemma 1 ([M 1979]). Let R be a π-equivalence on s. Then there is a set metric
h : s2 → Q such that for all x, y ∈ s we have

h(x, y) ≤ 1 and 〈x, y〉 ∈ R ⇔ h(x, y)
.
= 0.
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Lemma 2 ([V 1979a]). Let {Ri; i ∈ I} be a codable system of indiscernibility
equivalences on s. Then

⋂

i∈I Ri is an indiscernibility equivalence if and only if

there is a countable class J ⊆ I such that
⋂

i∈I Ri =
⋂

i∈J Ri.

Lemma 3 ([G–Z 1985]). Let R be an indiscernibility equivalence on s. Then for
every infinite set w ⊆ C[R] ∩ BQs there exist functions f, g ∈ w such that f 6= g
and f(x)

.
= g(x) for each x ∈ s.

Lemma 4. Let R be a σ-equivalence on s. Then R is compact on s if and only if
R is a set and the factor set s/R is finite.

Proof: Consider the class

C = {n ∈ N ; (∃u ⊆ s)(|u| < n & R ∩ u2 ⊆ Id)}.

Then C obviously is a π-cut on N (see [K–Z 1988]). If R is compact, then C ⊆ FN .
As FN is not a π-class, we have C ∈ FN . The rest is trivial. �

The following proposition can be verified immediately.

Proposition 1. For arbitrary equivalences P , R on s and arbitrary classes A, B ⊆
Qs the following conditions hold:

(i) R ⊆ T[C[R]],
(ii) A ⊆ C[T[A]],
(iii) P ⊆ R ⇒ C[R] ⊆ C[P ],
(iv) A ⊆ B ⇒ T[B] ⊆ T[A].

In other words, the maps R 7→ C[R], A 7→ T[A] define a Galois connection
between the families of equivalencies on s and subclasses of Qs.

Corollary. For every equivalence R on s and any class A ⊆ Qs the following

conditions are satisfied:

(v) C
[

T[C[R]]
]

= C[R],

(vi) T
[

C[T[A]]
]

= T[A].

As it can easily be seen, for an equivalence R ⊆ s2 we have R = T[C[R]] if and
only if

(∀x, y ∈ s)(∃ f ∈ C[R])(〈x, y〉 /∈ R ⇒ f(x) 6
.
= f(y)).

Similarly, a class A ⊆ Qs satisfies A = C[T[A]] if and only if

(∀ f ∈ Qs)(∃ 〈x, y〉 ∈ T[R])(f /∈ A ⇒ f(x) 6
.
= f(y)).

Obviously, every reflexive and symmetric relation (a symmetry for short) R on
s is the intersection of all set symmetries r on s such that R ⊆ r. A symmetry R
on s will be called set uniform if there is a class U of set symmetries on s such that
R =

⋂

U and for each r ∈ U there is a p ∈ U satisfying p ◦ p ⊆ r.
Clearly, every set uniform symmetry on s is an equivalence. Moreover, an equiv-

alence R ⊆ s2 is set uniform if and only if it can be written as an intersection of



684 J.Náter, P. Pulmann, P. Zlatoš

a family of π-equivalences. It follows that the system of all set uniform equivalences
on s is closed with respect to arbitrary intersections. As all π-equivalences and all
σ-equivalences on s are set uniform for trivial reasons, all πσ-equivalences on s are
set uniform, as well. An example of a σπ-equivalence which is not set uniform can
be found in [M 1990].
Now, we can characterize the equivalences on s closed with respect to the de-

scribed Galois connection.

Theorem 1. Let R be an equivalence on s. Then R = T[C[R]] if and only if R is
set uniform. In general, T[C[R]] is the least set uniform equivalence P such that
R ⊆ P .

Proof: If the above equality holds, then

R =
⋂

f∈C[R]

T[f ].

(We write T[f ] instead of T[{f}].) As each T[f ] obviously is a π-equivalence, R is
set uniform.
To prove the converse, take x, y ∈ s such that 〈x, y〉 /∈ R. As R is set uniform,

there is a π-equivalence P such that R ⊆ P ⊆ s2 and 〈x, y〉 /∈ P . Let h be the metric
for P guaranteed by Lemma 1. Then the function f defined by f(z) = h(x, z) for
z ∈ s obviously belongs to C[P ] ⊆ C[R] and we have f(x) = h(x, x) = 0 6

.
= h(x, y) =

f(y). This implies the desired equality for R.
The last statement is trivial. �

The problem of characterization of classes A ⊆ Qs closed with respect to the
described Galois connection is far from being solved. We quote here, omitting the
straightforward proofs, some necessary conditions only.

Proposition 2. Let A ⊆ Qs. If A = C[T[A]], then the following three conditions
are satisfied:

(i) Each constant function s → Q belongs to A.
(ii) For each n ∈ N and any set sequences 〈f1, . . . , fn〉 ∈ An, 〈g1, . . . , gn〉 ∈ An,

such that

n
∑

i=1

|fi(x) − fi(y)| |gi(x)|+
n

∑

i=1

|fi(y)| |gi(x)− gi(y)|
.
= 0

for each 〈x, y〉 ∈ T[A], we have
∑n

i=1 figi ∈ A.
(iii) The class A is closed in the topology of the BVS 〈Qs, IQs, BQs〉.

Corollary. If A = C[T[A]], then the following conditions hold:

(iv) If f, g ∈ A, then f + g ∈ A.
(v) If α ∈ BQ, f ∈ A, then αf ∈ A.
(vi) If f, g ∈ A ∩ BQs, then fg ∈ A.
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(vii) If n ∈ N , 〈α1, . . . , αn〉 ∈ Qn,
∑n

i=1 |αi| ∈ BQ and 〈f1, . . . , fn〉 ∈ An, then
∑n

i=1 αifi ∈ A.
(viii) If n ∈ N , 〈f1, . . . , fn〉 ∈ An, 〈g1, . . . , gn〉 ∈ An and

∑n
i=1 |fi| ∈ BQs,

∑n
i=1 |gi| ∈ BQs, then

∑n
i=1 figi ∈ A.

The next result is a direct consequence of Lemma 2 and the equality T[A] =
⋂

f∈AT[f ] for A ⊆ Qs.

Theorem 2. Let A ⊆ Qs. Then T[A] is an indiscernibility equivalence on s if and
only if for each f ∈ A the π-equivalence T[f ] is compact and there is a countable
class B ⊆ A such that T[A] = T[B].

To complete the description of classesA ⊆ Qs for whichT[A] is an indiscernibility
equivalence, we quote without proof the following easy result.

Proposition 3. Let f ∈ Qs. Then the π-equivalence T[f ] is compact if and only
if the equivalence of infinitesimal nearness

.
= is compact on the set rng(f) ⊆ Q.

Proposition 4. Let f ∈ Qs be such that T[f ] is an indiscernibility equivalence.
Then there is a g ∈ BQs such that T[f ] = T[g].

Proof: The class

R = {〈x, y〉 ∈ s2; f(x)− f(y) ∈ BQ}

obviously is a σ-equivalence on s andT[f ] ⊆ R. Thus R is compact. By Lemma 4, R
is a set and there is a finite number z1, . . . , zn of elements of s such that 〈zi, zj〉 /∈ R
for i 6= j and s =

⋃n
i=1R”{zi}. Without loss of generality we can assume that

f(zi) < f(zj) for i < j and f(x) ≤ f(zi) for each i and each x ∈ R”{zi}. Let
y1, . . . , yn ∈ s be such that 〈yi, zi〉 ∈ R and f(yi) ≤ f(x) for each i and each
x ∈ R”{zi}. Then g can be constructed by the induction putting

g(x) = f(x)− f(y1), for x ∈ R”{z1},

g(x) = f(x)− f(yi+1) + g(zi) + 1, for i < n, x ∈ R”{zi+1}.

�

Using Proposition 4, Theorem 2 can immediately be strengthened to

Theorem 3. Let A ⊆ Qs. Then T[A] is an indiscernibility equivalence if and only
if there is a countable class B ⊆ BQs such that T[A] = T[B]. If A = C[T[A]], then
B can be chosen subject to B ⊆ A ∩ BQs.

Now, it would be possible to rewrite the classical proof of the Stone-Weierstrass
theorem into our setting to obtain a partial answer to the posed question. We limit
ourselves to the formulation of the result.
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Theorem 4. Let A ⊆ BQs be such that T[A] is an indiscernibility equivalence.
Then A = C[T[A]] ∩ BQs if and only if the following conditions hold:

(i) Each constant function s → BQ belongs to A.
(ii) For all f, g ∈ A we have f + g ∈ A and fg ∈ A.
(iii) A is closed in the topology of the BVS 〈Qs, IQs, BQs〉.

Concerning the notion of dimensional compactness in BVS’, we record without
proof the following two trivial observations.

Lemma 5. Let 〈W, M, G〉 be a BVS. Then for every class A ⊆ W the following

conditions hold:

(i) If A is dimensionally compact and B ⊆ A, then B also is dimensionally
compact.

(ii) If the π-equivalence
.
=M is compact on the class A, then A is dimensionally

compact.

Proposition 5. Let 〈W, M, G〉 be a trim BVS and A ⊆ W be a balanced class.

Then A is dimensionally compact if and only if A ∩ G is dimensionally compact.

Proof: It is enough to show that A is dimensionally compact provided A ∩ G is.
Assume that w ⊆ A is an infinite independent set. Then by Theorem 6.2 from
[Sm–Z 1991], there is a q ∈ HR, q ≥ 1, and a (1, q)-valuation Φ : W → HR
inducing the biequivalence structure onW . By the set choice lemma for π-relations
(see [Sm–Z 1991, Lemma 1.1]), there is a set function η : w → Q such that

1
.
=

η(f)

Φ(f)
≤ 1

for each f ∈ w. Then the infinite set {η(f) · f ; f ∈ w} ⊆ A ∩ G is independent,
contradicting the dimensional compactness of A ∩ G. �

Our last result relates the property of dimensional compactness of the class
C[R] ⊆ Qs of all continuous set functions in the BVS 〈Qs, IQs, BQs〉 and the
property of compactness of the respective π-equivalence R ⊆ s2.

Theorem 5. Let R be π-equivalence on s. Then the following four conditions are
equivalent:

(a) R is compact on s.
(b) The π-equivalence

.
=s
is compact on the class C[R] ∩ BQs.

(c) The class C[R] ∩ BQs is dimensionally compact in 〈Qs, IQs, BQs〉.
(d) The class C[R] is dimensionally compact in 〈Qs, IQs, BQs〉.

Proof: The implication (a)⇒ (b) is in fact a restating of Lemma 3 only, (b)⇒ (c)
follows from the condition (ii) of Lemma 5 and so does (c)⇒ (d) from Proposition 5.
Thus it suffices to prove (d) ⇒ (a). Assume that R is not compact. Let u ⊆ s be
an infinite set, such that 〈x, y〉 /∈ R for all distinct x, y ∈ u. Let h be the metric for
R guaranteed by Lemma 1. For all x ∈ u, t ∈ s we put

d(x, t) = min {h(t, y); x 6= y ∈ u}.
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Then for all x ∈ u, t1, t2 ∈ s there are y1, y2 ∈ u such that d(x, t1) = h(x, y1),
d(x, t2) = h(x, y2) and

h(t1, y1) ≤ h(t1, y2) ≤ h(t1, t2) + h(t2, y2),

h(t2, y2) ≤ h(t2, y1) ≤ h(t2, t1) + h(t1, y1).

Thus d(x, t1)
.
= d(x, t2) whenever 〈t1, t2〉 ∈ R. As d(x, x) 6

.
= 0 for any x ∈ u, it

follows that by the assignment

gx(t) =
d(x, t)

d(x, x)
,

for t ∈ s, a set of functions w = {gx; x ∈ u} ⊆ C[R] is defined. Moreover, for all
x, y ∈ u we have gx(x) = 1 and gx(y) = 0 if x 6= y. Hence w obviously is infinite
and independent, contradicting the dimensional compactness of C[R]. �

As the class C[R], contains, e.g., all constant functions s → Q, the π-equivalence
.
=s obviously is not compact on C[R]. Thus the property of dimensional compact-
ness, in contrast to the compactness property, is preserved by the passage from
the class C[R] ∩ BQs of all bounded continuous functions to the class C[R] of
all continuous functions. For the class C[R] ∩ BQs the properties of compactness
and dimensional compactness coincide provided R is a π-equivalence. The ques-
tion whether there exist dimensionally compact classes A ⊆ G in a (trim) BVS
〈W, M, G〉, such that the π-equivalence

.
=M is not compact on A, remains open

even for the BVS 〈Qs, IQs, BQs〉.
There are, however, some indirect indications that the answer to the question is

affirmative. Modifying the notion of independence, a class A ⊆ W will be called
strongly independent in a BVS 〈W, M, G〉 if A ∩ M = ∅ and for any two nonempty
disjoint subsets v, w ⊆ A the following condition holds:

[v] ∩ ([w] +M) ⊆ M.

Obviously, every strongly independent class is independent. Now, a class A ⊆
W will be called weakly dimensionally compact (in 〈W, M, G〉) if each strongly
independent set w ⊆ A is finite. As it can easily be seen, dimensional compactness
implies weak dimensional compactness, and Lemma 5 and Proposition 5 remain
true when replacing the notion of dimensional compactness through its new weak
version, as well. Inspecting the proof of Theorem 5, one can find that even weak
dimensional compactness of the classC[R] implies compactness of the π-equivalence
R. Hence each of the conditions (a) — (d) of Theorem 5 is equivalent to any one
of the following two:

(e) The class C[R] ∩ BQs is weakly dimensionally compact in 〈Qs, IQs, BQs〉.
(f) The class C[R] is weakly dimensionally compact in 〈Qs, IQs, BQs〉.

However, as proved by M. Šmı́d [Sm 1987], the infinite set of functions w =
{fx; x ∈ s}, defined by fx(x) = 0 and fx(y) = 1 for y ∈ s, y 6= x, considered in
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the BVS 〈Qs, IQs, BQs〉, does not contain any infinite strongly independent subset.
Hence w is weakly dimensionally compact in 〈Qs, IQs, BQs〉. On the other hand,
w ⊆ BQs and fx 6

.
=s fy for x 6= y are trivial. Thus

.
=s is not compact on w.

To conclude, we will formulate more precisely the two open problems mentioned
in the text.

Problem 1. Characterize classes A ⊆ Qs, satisfying A = C[T[A]], in terms of
closedness with respect to some explicitly defined algebraic operations (with per-
haps infinite arities from N) on Qs and closedness with respect to some “natural”
topology (topologies) on Qs (e.g. induced by some BVS structure(s) on Qs).

Problem 2. Find an example of an infinite set w ⊆ BQs such that f 6
.
=s g for all

distinct f, g ∈ w and w is dimensionally compact in 〈Qs, IQs, BQs〉, or prove that
such a w does not exist. Decide the same question for other BVS structures on Qs

(e.g. for the spaces Lp(n)) and for general BVS’.
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