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A note on a theorem of Klee

Jerzy Ka̧kol

Abstract. It is proved that if E, F are separable quasi-Banach spaces, then E ×F contains
a dense dual-separating subspace if either E or F has this property.
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Introduction.

In [2] Klee answered (negatively) the following question posed by A. Robertson
and W. Robertson: If a topological vector space (tvs) E is dual-separating, i.e.
its topological dual E′ separates points of E from zero, is the same true of its
completion? Klee’s Corollary 3.6 of [2] leads to the following: If E is an infinite
dimensional separable Banach space and 0 < p < 1, then the product Lp × E

contains a dense dual-separating subspace. In fact, if τ is the original topology of Lp

and ϑ a vector topology on Lp such that (Lp, ϑ) ∼= E, then τ and ϑ are orthogonal [2].
Now by Corollary 3.6 of [2] we obtain that the completion of Z = (Lp, sup(τ, ϑ))
(Z is dual-separating!) is the product (Lp, τ)×E. Recall that Lp with τ is without
non-trivial continuous linear functionals [1].

In this note we extend this result by showing the following:

Theorem. Let E, F be two separable quasi-Banach spaces. Then E × F contains

a dense dual-separating subspace if either E or F contains a dense dual-separating

subspace.

A tvs E is quasi-Banach if E is metrizable and complete and E has a bounded
neigbourhood of zero; in this case E is locally p-convex for some 0 < p ≤ 1, [5,
p. 61].

Proof of Theorem: Our Theorem follows from the following

Lemma. Let (E, τ) be an infinite dimensional separable quasi-Banach space and
(Y, ϑ) an infinite dimensional separable metrizable and complete tvs. Let G be

a dense dual-separating subspace of (E, τ). Then there exists an injective linear
map P from G into Y such that D = {(x, P (x)) : x ∈ G} is a dense dual-separating
subspace of the product (E, τ) × (Y, ϑ).

Proof: Set τ0 = τ | G. First we find on G a separable normed topology β such that
the topology inf(τ0, β) is indiscrete. Next we prove that G admits a Hausdorff vector
topology α < β such that the completion (G, α)ˆ of (G, α) is isomorphic to (Y, ϑ).
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Suppose we have already found such topologies. Then inf(τ0, α) is indiscrete. Hence
△= {(x, x) : x ∈ G} is dense in (G, τ0) × (G, α). Since we have (G, sup(τ0, α)) ∼=
(△, τ0×α |△), then (G, sup(τ0, α))ˆ ∼= (△, τ0×α |△)ˆ ∼= (E, τ)× (G, α)ˆ ∼= (E, τ)×
(Y, ϑ). Let P be an isomorphism from (G, α) onto a dense subspace of (Y, ϑ). Then
Q : (x, y)→ (x, P (y)), x, y ∈ G, is an isomorphism from (G, τ0)×(G, α) onto a dense
subspace of (G, τ0)× (Y, ϑ). Hence Q |△: (x, x)→ (x, P (x)) is an isomorphism from
△ onto a dense subspace D = {(x, P (x)) : x ∈ G} of (E, τ) × (Y, ϑ). This also
proves that D is dual-separating. Now we construct β on G. Let µ(G, G′) be the
Mackey topology on G associated with τ0, i.e. the finest locally convex topology
on G weaker than τ0. Let B be the τ0-unit ball and set W = convB. Then
µ(G, G) is normed and W is a µ(G, G′)-bounded neighbourhood of zero. By [4,
Theorem 1], there exists a sequence (Gn)n∈N of τ0-dense subspaces of G such that
dimGn = c and G = ⊕∞

n=1Gn. Let pw be the Minkowski functional of W and

set qw(x) = supn(n + 1)
−1pw(xn), where xn ∈ Gn, x =

∑
∞

n=1 xn. Then (G, qw)
is a normed space. Let β be the topology defined by qw. Set Up = {x ∈ G :
pw(x) ≤ 1}, Vq = {x ∈ G : qw(x) ≤ 1}. Clearly tB ⊂ Up for some 0 < t < 1
and (n + 1)Up ∩ Gn ⊂ Vq , n ∈ N. Moreover Vq is τ0-dense. In fact, let x ∈ G.
Then x ∈ tnS for some n ∈ N, where S is a balanced τ0-neighbourhood of zero
such that S + S ⊂ B. Since Gn is τ0-dense, there exists xn ∈ Gn such that
xn − x ∈ tS ⊂ S. Therefore xn ∈ x + tS ⊂ tnB ⊂ (n + 1)Up ∩ Gn ⊂ Vq . Hence
we have that inf(τ0, β) is indiscrete and β is separable. Now we construct α. It
is enough to find such a topology on the completion H of (G, β). Since H is an
infinite dimensional separable Banach space, there exists a biorthogonal system
(xn, fn)n∈N such that xn ∈ H , fn ∈ H ′, (fn)n∈N is equicontinuous and total
on H . Let (yn)n∈N be a sequence in (Y, ϑ) such that

∑
∞

n=1 yn absolutely converges;
lin{yn : n ∈ N} is ϑ-dense; (yn)n∈N is linearlym-independent, i.e. if

∑
∞

n=1 tnyn = 0
for (tn)n∈N ∈ ℓ∞, then tn = 0, n ∈ N, [3, Theorem 1]. Then the linear map
T : H → Y , T (x) =

∑
∞

n=1 fn(x)yn is an injective compact map such that T (H) is
dense in Y and different from Y . This enables us to find a topology α as required.
The proof is complete. �
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