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On total curvature of immersions

and minimal submanifolds of spheres

Giovanni Rotondaro

Abstract. For closed immersed submanifolds of Euclidean spaces, we prove that
R
|µ|2 dV ≥

V/R2, where µ is the mean curvature field, V the volume of the given submanifold and R
is the radius of the smallest sphere enclosing the submanifold. Moreover, we prove that
the equality holds only for minimal submanifolds of this sphere.
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1. Introduction.

Let x :M → R
3 be an immersion of a smooth closed surface into the Euclidean

space, with mean curvature function H . The total mean curvature of x is, by
definition, the integral

∫

H2 dV over M , where dV is the induced volume element.
The idea of studying this integral, as a measure of the “niceness” of the shape
of the immersed surface, was discussed at meetings in Oberwolfach in 1960 [9].
The first result on this subject was obtained by Willmore [8], which suggested the
difficult problem of determining the infimum of the integral over all immersions, for
a given M , and characterizing those immersions for which this minimum value is
attained. Since then, the total mean curvature has become the object of intensive
studies, giving rise to a vast research area, with many interesting open problems
([10], [2]).
Among the various possible generalizations of the concept of total mean curvature

in higher dimensions and codimensions [4], one can consider the integral of the
squared norm |µ|2 of the mean curvature vector field µ, for a given immersion
x :Mn → R

n+p. In this paper we prove an extrinsic inequality relating this integral
with a number which is sensitive to the shape of the immersed submanifold. More
explicitly, we prove

∫

M
|µ|2 dV ≥ V/R2,

where V is the volume of the immersed submanifold and R denotes the radius of
the smallest closed ball enclosing x(M). Moreover, the equality holds if and only if
x immerses M as a minimal submanifold into the Euclidean hypersphere bounding
this ball.
The precise statement and proof of this result will be given in Section 3, after

the preliminaries in Section 2; in Section 4 we will treat the case the hypersurfaces,
and in Section 5 the case of the curves.
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2. Notations and preliminary results.

Through this note, M denotes smooth (C∞), connected, compact, oriented n-
dimensional manifold without boundary. In Sections 2, 3 and 4 the dimension will
be ≥ 2. Given a smooth immersion x : Mn → R

n+p into Euclidean (n+ p)-space,
we assume that M is endowed with the Riemannian metric induced by x from the
standard inner product 〈, 〉 on R

n+p. The volume n-form, volume and Laplace-
Beltrami operator on M will be denoted by dV , V and ∆.
Let us recall the definition of the mean curvature normal field. Let ∇◦ be the

Euclidean connection, and let ∇ be the induced Riemannian connection on M . If
X, Y are vector fields on M , the following well-known Gauss’ formula holds:

∇◦
XY = ∇XY + h(X, Y ).

(Here, a vector field on M is automatically identified with its image by the differ-
ential x∗.) The normal component h(X, Y ) of the ambient covariant derivative is
symmetric and bilinear in X, Y over the ring of R-valued functions onM . The sym-
metric bilinear normal-bundle-valued function h is called the second fundamental
form of the submanifold M , or of the immersion x. The normal vector field along x

µ = (1/n) trace (h)

is called the mean curvature normal of the immersed submanifold.
The following facts are all well-known. We state them for future use.

(i) ∆x = nµ. (See [6].)
(ii) Takahashi’s theorem. If x is a minimal immersion of M into the Euclidean

(n+ p− 1)-sphere Sn+p−1(O, R), with center at the origin O and radius R,
then ∆x = −(n/r2)x. Conversely, if ∆x = λx, then λ is a negative
constant and x is a minimal immersion of M into Sn+p−1(O, R), where

R =
√

(−n/λ). (See [2]. Recall that, if x(M) lies in a sphere, then x is
minimal into the sphere iff µ is purely normal.)

(iii) Minkowski’s formula. V = −
∫

M 〈x, µ〉 dV . (See [5].)

Let B be the smallest closed (n + p)-ball containing x(M). By adapting the
terminology of [1] to the present situation, we will call the radius and the center
of B the circumradius and the circumcenter of x(M), or of x. Without loss of
generality, we can suppose that the circumcenter is O. Then the circumradius will
be the maximum value of |x| on M .

3. The main theorem.

We want to prove the following

Proposition 1. If x :Mn → R
n+p is a smooth immersion of a closed n-manifold,

n ≥ 2, then

(1)

∫

M
|µ|2 dV ≥ V/R2,
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where R is the circumradius of x(M). Moreover, the equality holds if and only if x
is a minimal immersion of M into Sn+p−1(O, R).

Proof: In the real vector space of R
n-valued smooth functions on M , define the

inner product of u and v by

(u, v) =

∫

M
〈u, v〉 dV.

Then the formula of Minkowski becomes V = −(µ, x), and Cauchy-Schwartz in-
equality gives V 2 ≤ (µ, µ)(x, x) ≤ V R2(µ, µ), which implies the inequality (1).
Now, if x minimally immerses M into Sn+p−1(O, R), then the tangential com-

ponent of µ must vanish, and µ coincides with ±(1/R2)x, i.e. the mean curvature
normal of the standard (n+p−1)-sphere in R

n+p. Consequently, the equality holds
in (1).
Conversely, if the equality holds in (1), then (µ, x)2 = (µ, µ)(x, x) and, by stan-

dard arguments, there exists a ∈ R such that µ = ax. Therefore ∆x = nµ = nax,
and the desired result follows by Takahashi’s theorem. �

Remark 1. A famous result of Chern and Hsiung [3] says that there exist no
compact minimal submanifolds in R

n. This fact is also an immediate consequence
of (1).

4. The case of hypersurfaces: a characterization of Euclidean hyper-

spheres.

Let us consider what happens when Mn, n ≥ 2, is an immersed hypersurface,
i.e. p = 1. Due to topological reasons, x(M) can be contained in Sn(O, R) only if
it actually coincides with the whole sphere. In this case, Hadamard’s theorem on
ovaloids [6] forces x to be an imbedding. On the other hand the length of the mean
curvature normal, up the sign, is the mean curvature function. Then we have the
following characterization of Euclidean hyperspheres:

Proposition 2. Let x : Mn → R
n+1 be an immersed closed hypersurface, with

mean curvature function H , volume V , circumradius R and circumcenter O. Then

(2)

∫

M
H2 dV ≥ V/R2

and the equality holds if and only if x is an embedding and x(M) coincides with
the standard hypersphere Sn(O, R).

Remark 2. IfMn is diffeomorphic to Sn (endowed with the standard differentiable
structure) then, for given V/R2, the immersion which realizes the minimum value
of the integral (2) is the standard one. This circumstance agrees with the heuristic
hypothesis of Willmore [8] on the aesthetic meaning of the total mean curvature.

5. The case of the curves.

In dealing with closed immersed 1-manifolds it is preferable to consider para-
metrized closed curves, rather than immersions of the circle S1. Moreover, although
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the previous treatment can be adapted, with some changes, to the present situation,
it seems more convenient to proceed directly.
A map x : [0, L] → R

n, n ≥ 2 will be said a nondegenerate closed curve of
length L if there exists a smooth map y : R → R

n such that

(i) y has period L and y | [0, L] = x,
(ii) |y′(s)| = 1 for all s ∈ R, and
(iii) there exists a Frenet-n-frame along y.

The curvature of x is the restriction k at [0, L] of the (first) curvature of y.

Proposition 3. Let x : [0, L] → R
n, n ≥ 2, be a nondegenerate closed curve of

length L, with curvature k, circumradius R and circumcenter O. Then we have

(3)

∫ L

0
k2 ds ≥ L/R2.

Moreover, the equality holds if and only if x([0, L]) is the circle S1(0, L), covered
once by x.

Proof: In our hypotheses we have

L =

∫ L

0
|x′|2 ds = −

∫ L

0
〈x, x′′〉 ds.

Then, applying Cauchy-Schwartz inequality for integrals, we obtain

L2 ≤

∫ L

0
|x|2 ds

∫ L

0
|x′′|2 ds,

which implies the inequality (3). Now, if x maps [0, L] onto S1(O, R), without
double points in ]0, L[ , we have, of course, the equality in (3). Conversely, if the
equality holds, then must be x′′ = ax, a ∈ R. Thus, following Chen [2], x is a closed
curve of 1-type and, consequently, x([0, L]) lies in a plane; but then it is a circle,
and the result follows easily. �

Remark 3. In [7] Weiner proved an inequality analogous to (3), although much
more involved. For plane curves, the two inequalities coincide.
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