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On the injectivity of Boolean algebras

B. Banaschewski

Abstract. The functor taking global elements of Boolean algebras in the topos ShB of
sheaves on a complete Boolean algebra B is shown to preserve and reflect injectivity as
well as completeness. This is then used to derive a result of Bell on the Boolean Ultrafilter
Theorem in B-valued set theory and to prove that (i) the category of complete Boolean
algebras and complete homomorphisms has no non-trivial injectives, and (ii) the category
of frames has no absolute retracts.

Keywords: sheaves on a complete Boolean algebra, injective Boolean algebra, complete
Boolean algebra, injective complete Boolean algebra, absolute frame retract

Classification: 03E25, 03E40, 03G05, 06A23, 06E99

This paper has two separate motivations, each leading to questions concerning
the injectivity of Boolean algebras in various settings.
The first of these is the fact, established by Bell [3] that, for any complete Boolean

algebra B in Zermelo-Fraenkel Set Theory (ZF), a certain version of the Boolean
Ultrafilter Theorem holds in the B-valued model of ZF iff B is injective. Here, we
present a stronger result, using the topos ShB of sheaves on B as the natural, intu-
itively suggestive realization of the category of B-valued sets and maps (Higgs [5],
Blass-Sčedrov [4]). Indeed, we show a Boolean algebra in ShB is injective in the
category BooShB of all such Boolean algebras iff the Boolean algebra of its global
elements is injective in the categoryBoo of ordinary (= set based) Boolean algebras
(Proposition 1). In particular, this means the initial Boolean algebra in ShB is in-
jective in BooShB iff B is injective (Corollary 1), which is the present counterpart
of Bell’s result referred to above.
The second motivation is the following question, raised by Pultr [10]: For a given

complete Boolean algebra B, call any frame extension L ⊇ B a B-frame and any
homomorphism L → B overB aB-point of L. Now, for the case B = 2 of ordinary
frames, it is a classical fact that there are B-frames without B-points. Question: Is
there a complete Boolean algebra B for which every B-frame has a B-point? We
show the answer is “no”, by proving that the category of frames has no non-trivial
absolute retracts (Proposition 4). This, in turn, is derived from the result that the
category of complete Boolean algebras and complete homomorphisms has no non-
trivial injectives (Proposition 3). Our proof of this uses complete Boolean algebras
and appropriately defined atomless Boolean algebras in ShB.

This paper was first presented to the seminar of the Categorical Topology Research Group
at the University of Cape Town during a sabbatical leave in 1990. Financial assistance from
that group as well as ongoing grant support from the Natural Sciences and Engineering Research
Council of Canada are gratefully acknowledged
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1. Background.

In the following, B will be a (non-trivial) complete Boolean algebra, with ele-
ments U, V, W, . . . , zero 0 and unit E. ShB is then the familiar category of sheaves
of sets on B in “the” category Ens of sets as provided by Zermelo-Fraenkel set
theory not (necessarily) including the Axiom of Choice (ZF).
Further, we consider various categories of Boolean algebras, as follows:

Boo — Boolean algebras and their homomorphisms in Ens.

B ↓Boo — Boolean algebras over B in Ens, that is, all B → A in Boo, with
the compatible homomorphisms between their codomains as maps.

BooShB — Boolean algebras and their homomorphisms in ShB.

For general notation regarding sheaves we follow Banaschewski-Bhutani [2]. In
particular, for A ∈ BooShB and U ∈ B, AU is the component of A at U ; if
V ≤ U in B, the restriction map AU → AV is denoted c  c | V ; and for any
homomorphism h : A → C in BooShB, hU : AU → CU will be its component for
U ∈ B. Recall also that the initial Boolean algebra 2B in ShB has the components

2BU = ↓U = {V ∈ B |V ≤ U},

for each U ∈ B. For any A ∈ BooShB, iA : 2B → A will be the unique homo-
morphism; then, for any V ∈↓U , iAU (V ) is the element of AU whose restriction
to V is the unit of AV while its restriction to the complement of V in ↓U is zero.
Finally, for any W ∈ B, the complete Boolean algebra ↓W gives rise to the restric-
tion functor BooShB → BooSh(↓W ), taking each A ∈ BooShB to its restriction
A |W with the same components as A for each U ≤ W .
The familiar functors ShB → Ens and Ens→ ShB, associating the set of global

elements, that is, the component at E, with each sheaf and the sheaf resulting from
the corresponding constant presheaf with each set, respectively, lift to analogous
functors Γ : BooShB → Boo and ∆ : Boo→ BooShB, ∆ being left adjoint to Γ.
The latter may obviously also be viewed as a functor into B | Boo, taking each
A ∈ BooShB to ΓiA : B → ΓA since Γ2B = 2BE = B; indeed, for any h : A → C

in BooShB, we have hiA = iC and consequently Γh ΓiA = ΓiC .
Each A ∈ BooShB determines its ideal lattice JA in ShB, where (JA)U is the

lattice, in Ens, of all ideals J ⊆ A |U , that is, the subsheaves J of A |U in Sh(↓U)
for which each component JV , V ≤ U , is an ideal of AV . JA comes equipped
with a lattice homomorphism [·] : A → JA, corresponding to the ordinary notion of
principal ideal, given by

AU → (JA)U

a [a]U

[a]UV =↓(a |V ) ⊆ AV

for any U and V ≤ U in B. Then a Boolean algebra A in ShB is complete iff
there exists a map

∨
: JA → A in ShB such that, for all U ∈ B, J ∈ (JA)U , and

a ∈ AU , ∨
U J ≤ a iff J ⊆ [a]U .



On the injectivity of Boolean algebras 503

Further, any A ∈ BooShB has a completion, given by the Boolean algebra NA in
ShB of its normal ideals, defined as the equalizer of the identity map JA → JA

and the map ( )∗∗ : JA → JA where (·)∗ : JA → JA is the pseudocomplementation.
It turns out that the lattice homomorphism [·] : A → JA actually maps into NA,
providing an embedding of A into the complete Boolean algebra NA.
Note that 2B is complete, by a result of Johnstone [7] concerning the complete-

ness of the initial Boolean algebra in an arbitrary topos. On the other hand, ΓA is
complete for any complete A ∈ BooShB, by a general result regarding complete
partially ordered sets in a topos (Johnstone [6, p. 147]).
Next, we present a useful canonical description of the Boolean algebras in ShB.
For any U ∈ B, let U∗ be its complement so that the restriction map induce an

isomorphism AE → AU × AU∗ for any A ∈ BooShB. Further, for any V ∈ B,
let 0V and eV be the zero and unit of AV , and define sU ∈ AE as the element
corresponding to (eU , 0U∗) by the above isomorphism. Of course, sU = iAE(U) by
the earlier description of the initial homomorphism iA : 2B → A. Now put

ÃU = {x ∈ AE |x ≤ sU} = ↓sU (U ∈ B)

ÃU → ÃV : x x ∧ sV (V ≤ U).

Clearly, this is a presheaf of Boolean algebras on B. Moreover, the map ÃU → AU

by restriction is an isomorphism: it is a Boolean homomorphism since sU |U = eU ,
one-one since x ≤ sU implies x |U∗ = 0, and onto because this is the case for the
restriction map AE → AU . It now follows immediately that one has an isomorphism
ϕA : Ã → A whose components are given by the restriction maps.
Further, the correspondenceA Ã is functorial: for any h : A → C in BooShB,

hE maps ÃU ⊆ AE into C̃U ⊆ CE and determines h̃ : Ã → C̃ since hiA = iC ;
moreover, the passage h  h̃ clearly preserves composition and identity maps.
Finally, one easily checks that the isomorphisms ϕA : Ã → A are natural in A.
Apart from ShB, we shall occasionally refer to the more general topos ShL where

L is an arbitrary frame, that is, a complete lattice in which binary meet distributes
over arbitrary joins. Various aspects of the corresponding BooShL are studied
in Banaschewski-Bhutani [2], albeit with the Axiom of Choice assumed for the
underlying set theory. For general facts about frames, see Johnstone [8]. Categorical
notions will be used here as in Mac Lane [9], and for the details concerning internal
satisfaction in a topos we refer to Johnstone [8].

2. Injectivity.

As usual, an object A in any category is called injective if, for any f : B → A

and any monomorphism h : B → C, there exist g : C → A such that f = gh. Here,
we are concerned with the relationship between injectives in BooShB and Boo.
First, a crucial result which shows that BooShB is essentially determined by

what happens at the level of global elements.

Lemma 1. As a functor into B↓Boo, Γ is full and faithful.

Proof: For any f, g : A → C in BooShB, if Γf = Γg, that is, fE = gE , then
clearly f̃ = g̃ and hence f = g, the latter by the naturality of the isomorphisms ϕA.
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On the other hand, for A, C ∈ BooShB, any h : ΓA → ΓC such that hiAE = iCE

maps ÃU into C̃U , because x ≤ iAE(U) implies h(x) ≤ hiAE(U) = iCE(U), and

hence determines a homomorphism f : Ã → C̃. Then, for g = ϕCfϕ−1
A : A → C

Γg = ΓϕCΓf(ΓϕA)
−1 = Γf = h,

showing that Γ is full. �

Remark. It would be easy to list conditions which characterize the precise image
of BooShB in B ↓Boo by the functor Γ. In particular, the separation property of
sheaves that a = b for any a, b ∈ AU whenever U is covered by the V ≤ U for which
a |V = b |V corresponds to the condition that h : B → C preserve all joins. This

does make the relevant presheaf C̃, defined by C̃U = ↓h(U), separated while it is
easy to see that iAE : B → AE indeed preservers all joins, for any A ∈ BooShB.

Concerning injectivity, we now have

Proposition 1. Γ : BooShB → Boo preserves and reflects injectivity.

Proof: Γ preserves injectivity by a familiar argument based on the fact that its
left adjoint ∆ preserves monomorphisms. To see that Γ reflects injectivity, let
A ∈ BooShB be such that ΓA is injective in Boo and consider any f : C → A

and any monomorphism h : C → D. Since Γ preserves monomorphisms, there exist
g : ΓD → ΓA in Boo for which Γf = gΓh, by hypothesis. Further, since fiC = iA
and hiC = iD,

giDE = g(Γh)iCE = (Γf)iCE = iAE ,

hence g actually belongs to B ↓Boo, and by Lemma 1, g = Γk for some k : D → A.
Then Γ(kh) = gΓh = Γf , and again by Lemma 1 it follows that kh = f as desired.

�

Since Γ2B = B, an obvious special case of the proposition is

Corollary 1. A complete Boolean algebra B is injective in Boo iff 2B is injective

in BooShB.

There is a further consequence of Proposition 1, concerning Sikorski’s Theorem
by which the complete Boolean algebras are exactly the injectives in Boo. To
put this into perspective, recall that Banaschewski-Bhutani [2] proved the Sikorski
Theorem for the topos ShL of sheaves on an arbitrary locale L, assuming the Axiom
of Choice in the underlying set theory. It was then pointed out in [2] that it was
unknown whether this could already be proved if one only assumed the Sikorski
Theorem. In the present context, however, we have

Corollary 2. If the Sikorski Theorem holds in Ens then it also holds in ShB, for

any complete Boolean algebra B.

Proof: As noted earlier, if A ∈ BooShB is complete then ΓA is complete, hence
injective in Boo by hypothesis, and therefore A is injective in BooShB by Propo-
sition 1.

�
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Remark 1. A familiar fact concerning Boolean algebras is that the Boolean Ul-
trafilter Theorem (BUT), which says every non-trivial Boolean algebra contains an
ultrafilter, is equivalent to the condition that the initial Boolean algebra 2 is injec-
tive in Boo. Hence, the injectivity of 2B in BooShB may be viewed as a form of
BUT in ShB, and the above Corollary 1 can then be interpreted as saying that,
for any complete Boolean algebra B, BUT holds in ShB iff B is injective. How-
ever, there is another sense in which one might consider the Boolean Ultrafilter
Theorem in ShB, namely that of topos theoretical internal satisfaction (notation:
ShB |= BUT) which is equivalent to satisfaction in the B-valued model of set the-
ory. Given the familiar equivalence between ultrafilters and homomorphisms into
the initial Boolean algebra, this may be rendered as the condition that, for any
A ∈ BooShB, the statement “If A is non-trivial, then A has a homomorphism into
the initial Boolean algebra” has truth value E ∈ B. Bell [3] uses his result referred
to earlier to show that ShB |= BUT whenever B is injective. In our setting, this
appears as an easy consequence of Corollary 1, in view of the following observation:
For any complete Boolean algebra B, ShB |= BUT whenever 2B is injective. To
see this, let S ∈ B be the truth value of the statement “A is non-trivial” and T ∈ B

the truth value of the statement “There exists a homomorphism from A to the ini-
tial Boolean algebra”. This means S is the largest U ∈ B for which 2B |U → A |U
is monic, while T is the join of all W ∈ B such that there exist homomorphisms
A |W → 2B|W . Now, for C ∈ BooShB defined by

C |S = A |S and C |S∗ = 2B|S∗,

iC : 2B → C is monic, hence by injectivity there exist h : C → 2B, and conse-
quently h |S : A |S → 2B |S. Thus S ≤ T so that S → T = E for the truth value
in question, as claimed.
In conclusion, we note that the precise meaning of ShB |= BUT is that whenever

2B → A is monic then the U ∈ B for which there exist A | U → 2B | U have
join E. We do not know whether this “local” injectivity implies the formally stronger
condition that 2B be injective.

Remark 2. As in the case of BUT just discussed, one can also consider the Sikorski
Theorem in ShB in the sense of internal satisfaction rather than in the external
meaning of Corollary 2, and a similar argument then shows that the external Sikorski
Theorem implies the internal one. We note this provides an alternative proof for
the final result of Bell [3] that satisfaction of the Sikorski Theorem is preserved by
Boolean-valued models.

Remark 3. For sheaves on a non-Boolean locale L, Proposition 1 becomes false:
although Γ always preserves injectivity it need not reflect it. There are obvious
counter-examples in the case that L is the three-element chain.

3. Complete homomorphisms.

The correspondence A  JA, for A ∈ BooShB, is obviously functorial, the
lattice homomorphism Jh : JA → JC induced by a homomorphism h : A → C

taking any ideal J ⊆ A |U to the ideal of C |U determined by the images hV [JV ] ⊆
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CV , V ≤ U . For complete A, C ∈ BooShB, a homomorphism h : A → C is then
complete iff the following square

JA
Jh

−−−−→ JC
y

y

A −−−−→
h

C

commutes where the vertical maps are the respective join maps. It is clear that, in
the special case of Ens = Sh2, this amounts to the usual notation of completeness,
that is, preservation of arbitrary joins.
The following describes the relation between completeness, both, of Boolean

algebras and their homomorphisms, in ShB and in Ens.

Proposition 2. Γ : BooShB → Boo preserves and reflects completeness.

Proof: (1) We have to show, for any A ∈ BooShB, that A is complete iff ΓA is
complete. As already noted, ΓA is complete whenever A is, and hence we only need
to prove the converse. For this, it is convenient to use the isomorphism A ∼= Ã. In
the following, we use “sup” for the join in AE. For any ideal J ⊆ Ã |U , put

∨
U J = sup

⋃
{JW |W ≤ U}.

Then, for any a ∈ ÃU ,

J ⊆ [a]U iff JW ⊆ [a]UW, for all W ≤ U,

iff JW ⊆↓(a ∧ sW ), for all W ≤ U,

iff x ≤ a, for all x ∈ JW, W ≤ U,

iff
∨

U J ≤ a.

Hence
∨

U has the correct property at U . To see this defines a sheaf map we have
to check for any V ≤ U that the corresponding square

(JÃ)U −−−−→ ÃU
y

y

(JÃ)V −−−−→ ÃV

commutes. Here, for any ideal J ⊆ Ã |U , its image in ÃV through ÃU is

(
∨

U J) ∧ iAE(V ) = sup{x ∧ iAE(V ) | x ∈ JW for some W ≤ U}

while its image through (JÃ)V is

∨
V (J |V ) = sup{y ∈ AE | y ∈ JS for some S ≤ V }.
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Now, x ∈ JW implies x∧ iAE(V ) ∈ J(W ∧ V ) and hence the latter is one of the y.
On the other hand, each y is trivially of this form, so the two sets involved are the
same, and hence their joins are equal.

(2) Given any complete A, C ∈ BooShB, we have to show that a homomorphism
h : A → C is complete iff Γh : ΓA → ΓC is complete. For (⇒), we use that the join
of any ideal J ⊆ AE can be represented by the join map of A as follows: Let J be
the ideal of A such that, for all U ∈ B and x ∈ AU , x ∈ JU iff there exists a cover
U =

∨
Ui and corresponding ai ∈ H for which x |Ui ≤ ai |Ui, for all i. Then, one

easily checks that J ⊆ [c] iff J ⊆↓c, for all c ∈ AE, and this means
∨

E J is the join

of J in AE. Further, if I is the ideal of CE generated by hE [J ] then (Jh)E(J) = I

for the corresponding ideal I of C, and hence

hE(sup J) = hE(
∨

E J) =
∨

E(Jh)E(J) =
∨

E I = sup I = suphE [J ],

which shows hE is complete.
For (⇐), note first that h is complete iff the corresponding h̃ : Ã → C̃ is complete

so that it suffices to prove the latter. Moreover, for this we can use the expression
established in (1) for the join maps of Ã and C̃. Thus, for any ideal J ⊆ Ã |U ,

h̃(
∨

U J) = hE(sup
⋃

{JW |W ≤ U})

= sup
⋃

{hE [JW ] |W ≤ U},

the latter by the completeness of hE , whereas

∨
U (Jh̃)U (J) = sup

⋃
{Jh̃U (J)W |W ≤ U}.

Now for any c ∈ CE, c ∈ (Jh̃)U (J)W iff there exists a cover W =
⋃

Wi and
corresponding ai ∈ JWi such that c ∧ iCE(Wi) ≤ hE(ai), and this immediately
shows the above two joins are equal, as desired. �

Recall that 2B is complete and that, by the remark after Lemma 1, any iAE :
B → AE preserves all joins. Thus, for complete A, iAE is a complete homomor-
phism, and hence we have the

Corollary. For any complete A ∈ BooShB, iA : 2B → A is complete.

Remark. Proposition 2 also no longer holds for sheaves on non-Boolean locales;
again, there are obvious counter-examples in the case of the three-element chain.
On the other hand, the corollary actually holds under the most general conditions
possible, namely, for any topos in which the initial Boolean algebra is complete.

4. Complete injectives.

Recall that, in any category, an object A is called an absolute retract if any
monomorphism A → B has a left inverse. Of course, every injective object is
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an absolute retract; the converse, while not true in general, holds whenever the
category has the property that any f : A → B and any monomorphism h : A → C

are part of a commuting square

A
h

−−−−→ C

f

y
yf

B −−−−→
h

D

with monic h. We note, as a companion to the corresponding well-known fact con-
cerning Boo, that the category CBoo of complete Boolean algebras and complete
homomorphisms is of this kind: Given f : A → B and monic h : A → C in CBoo,
one has a diagram

A
h

−−−−→ C

f

y
yℓ

B −−−−→
k

L −−−−→
g

M

where the square is the pushout in the category Frm of frames and g : L → M

any frame embedding into a complete Boolean algebra. Now, by Banaschewski [1],

k is monic, and thus f = gℓ and h = gk provide the desired commuting square in
CBoo.
The main aim of this section is to establish that CBoo has no non-trivial injec-

tives. The following notion will be useful tool for this purpose.
A Boolean algebra A in ShB will be called atomless if

ShB |= (∀ a ∈ A) ((0 < a)→ (∃ b ∈ A) ((0 < b) ∧ (b < a)))

in the usual sense of satisfaction in the internal logic of ShB, where b < a is
understood as (b ≤ a) ∧ ¬(b = a). To explicate this condition, we note: [0 < a]A
is the largest subsheaf of A disjoint from the singleton subsheaf {0}, which means
that, for any U ∈ B,

[0 < a]A U = {x ∈ AU |0 < x |V for all V ≤ U, V 6= 0}.

We shall call the x ∈ AU which satisfy the stated condition persistently positive.
Similarly, [b < a]A is the subsheaf of A × A with the components

{(x, y) ∈ AU × AU |x |V < y |V for all V ≤ U, V 6= 0}.

For pairs (x, y) which satisfy this condition we shall say that x < y persistently .
Hence A ∈ BooShB is atomless iff, for any persistently positive x ∈ AU , U is
covered by the W ≤ U such that there exist persistently positive y ∈ AW for which
y < x |W persistently.
Note that, for the case Ens = Sh2, atomlessness just means what the naive

connotation amounts to.
We need a number of lemmas concerning atomless Boolean algebras in ShB.
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Lemma 3. The completion of any atomless A ∈ BooShB is again atomless.

Proof: We use the fact that, for the completion C ⊇ A,

ShB |= (∀ c ∈ C) ((c = 0)↔ (∀ a ∈ A) ((a ≤ c)→ (a = 0)))

which is easily derived from the description of the completion of A in terms of the
Boolean algebra of normal ideals of A. Now, by Booleanness, this implies

ShB |= (∀ c ∈ C) ((0 < c)→ (∃ a ∈ A) ((0 < a) ∧ (a ≤ c)))

which in turn yields

ShB |= (∀ c ∈ C) ((0 < c)→ (∃ a, b ∈ A) ((0 < b) ∧ (b < a) ∧ (a ≤ c)))

by the hypothesis on A. Clearly, this shows C is atomless. �

Lemma 4. For any atomless A ∈ Boo, ∆A is atomless.

Proof: We use the familiar description of (∆A)U , for any U ∈ B, as the set of all
maps s : A →↓U such that s(a)∧s(b) = 0 whenever a 6= b and U =

∨
{s(a) |a ∈ A}.

The restriction maps (∆A)U → (∆A)V are then given by (s | V )(a) = s(a) ∧ V .
Particular elements of (∆A)U are the constants, defined for each a ∈ A and U ∈ B

by

a
˜U (x) =

{
U (x = a)

0 (x 6= a)

Then a
˜U | V = a

˜V whenever V ≤ U . Also, for any s ∈ (∆A)U and a ∈ A,
s |s(a) = a

˜s(a), as easy calculation shows. Further, from the general description of

binary meet in (∆A)U by the formula

(s ∧ t)(x) =
∨
{s(y) ∧ t(z) |y ∧ z = x},

one sees that a
˜U ∧ b

˜U = ((a ∧ b)∼)U for any a, b ∈ A and U ∈ B. In particular, if
a ≤ b (a < b) then a

˜U ≤ b
˜U (a˜U < b

˜U persistently).
Note that s ∈ (∆A)U is persistently positive iff s(0) = 0. Given the latter and

S |V = 0 for some V ≤ U , we have

0 = s |s(a) ∧ V = a
˜s(a) |s(a) ∧ V

for any non-zero a ∈ A, hence s(a) ∧ V = 0, and since these s(a) cover U it follows
that V = 0. Conversely, if s(0) > 0 then s |s(0) = 0

˜s(0) = 0 shows that s fails to be

persistently positive.
Now, consider any s ∈ (∆A)U such that s(0) = 0. Then a > 0 for any a ∈ A for

which s(a) > 0, and by hypothesis there exist b ∈ A such that 0 < b < a. Hence,
for W = s(a), 0 < b

˜W < a
˜W persistently while a

˜W = s |W . Since U is the join of
these W , this shows ∆A is atomless. �
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Remark. Actually, Lemma 4 is a special case of a very general principle: For any
algebra A in Ens, of arbitrary (finitary) type, and any sentence ϕ in the corre-
sponding first order language, if A satisfies ϕ then ∆A satisfies ϕ in ShB.

Lemma 5. Any complete atomless C ∈ BooShB has no complete homomorphism
h : C → 2B.

Proof: Otherwise, let K ⊆ C be the kernel of h, that is, the ideal with the
components KU = {x ∈ CU | hU (x) = 0} and put s =

∨
E K with complement

a ∈ CE. Then, hE(s) = 0 by completeness, so that hU (a |U) = U and therefore
a |U > 0 for all U 6= 0. This shows ShB |= (0 < a) and hence

ShB |= (∃ c ∈ C) ((0 < c) ∧ (c < a))

by hypothesis. On the other hand, by the definition of s and a,

ShB |= (∀ c ∈ C) ((h(c) = 0)→ (c ≤ s))

and

ShB |= (∀ c ∈ C) (h(c) = 1)→ (a ≤ c),

and usual deduction then leads to a contradiction in view of the basic fact that

ShB |= (∀ c ∈ C) ((h(c) = 0) ∨ (h(c) = 1)).

�

These lemmas now lead to the following crucial result concerning complete Boolean
algebras and complete homomorphisms in ShB:

Lemma 6. 2B is not injective in CBooShB.

Proof: For any non-trivial A ∈ Boo, i∆A : 2B → ∆A is obviously monic. Hence,
if A is also atomless then ∆A is atomless by Lemma 4, its completion C is atomless
by Lemma 3, and there are no complete homomorphisms C → 2B by Lemma 5,
while iC : 2B → C is monic. �

Remark. Perhaps it should be pointed out that there is indeed a large supply of
atomless Boolean algebras in ZF, for instance: the Boolean algebras free on some
infinite set, the Boolean algebras of open-closed subsets of Boolean spaces without
isolated points, such as the Cantor space, and the Boolean algebras of regular open
subsets of regular Hausdorff spaces without isolated points, such as the real line.

Proposition 3. CBoo has no non-trivial injectives.

Proof: For any non-trivial B ∈ CBoo, if C ∈ CBooShB is, as in the preceding
proof, such that iC : 2B → C is monic but there is no h : C → 2B, then iCE :
B → CE is monic and complete but without complete left inverse, by Lemma 1
and Proposition 2. �
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Corollary. CBooShB has no non-trivial objectives.

Proof: We show that, for any injective A ∈ CBooShB, AE is injective in CBoo
which then makes it trivial by the proposition and this, in turn, makes A trivial.
Actually, we only prove that AE is an absolute retract in CBoo, but by the

opening remark of this section, this will be sufficient. Consider, then, any monic
h : AE → C in CBoo and define C by CU =↓hiAE(U). One readily checks this is
a Boolean algebra in ShB, complete by Proposition 2 since CE = C is complete,
with a homomorphism k : Ã → C determined by h, also complete by Proposition 2
since h is complete. Now, k is monic and Ã ∼= A injective, hence k has a left inverse,
and this provides the desired left inverse for kE = h. �

Proposition 4. Frm has no non-trivial absolute retracts.

Proof: Any such frame L must be Boolean since every frame has an embedding
into a Boolean frame. Thus, L ∈ CBoo which makes it an absolute retract, and
hence injective, in the subcategory CBoo of Frm. By Proposition 3, it then follows
that L is trivial, as claimed. �

Since the usual embedding of a frame into a Boolean frame is a constructive
procedure, it also applies to the category FrmShB of frames in ShB. Hence, the
argument just used also applies to this category, and by the corollary of Proposi-
tion 3 we then obtain:

Corollary. FrmShB has no non-trivial absolute retracts.
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