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Some conditions under which a uniform space is fine

Umberto Marconi

Abstract. Let X be a uniform space of uniform weight µ. It is shown that if every open
covering, of power at most µ, is uniform, then X is fine. Furthermore, an ωµ-metric space
is fine, provided that every finite open covering is uniform.
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additive space, ωµ-metric space
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0. A recurrent problem about uniform spaces is to see whether a uniformity is the
finest one compatible with the topology. Isiwata and Atsuji solved this problem in
metric spaces [2], [6]. The following theorem summarizes some equivalent conditions
of Theorem 1 of [2].

Theorem 1. The following conditions on a metric space X are equivalent:

(1) every open covering is uniform;
(2) every countable open covering is uniform;
(3) every open covering consisting of two elements is uniform;
(4) the subset K of limit points is compact and, for every uniform covering U ,
the subspace X \ St(K,U) is uniformly discrete.

(The star St(K,U) of K with respect to U is the union of all elements of U which
have a non-empty intersection with K).

It is interesting to see if a suitable version of Theorem 1 also holds in uniform
spaces. Metric spaces are uniform spaces with a countable base for the uniformity;
this base can be assumed to be well ordered by star-refinement. In uniform spaces,
the existence of a well ordered base is a very strong property.
We will prove that an equivalence analogous to 1 ⇔ 2 holds for general uniform

spaces and depends only on cardinal properties, while the equivalence 1 ⇔ 3 can be
generalized to ωµ-metric spaces (= uniform spaces which admit a base of uniform
coverings well ordered by a regular cardinal ωµ). In ωµ-metric spaces we will
provide a suitable formulation of the condition 4 (obviously in uniform spaces 3 6⇒ 1
and 1 6⇒ 4).

1. Unless otherwise specified, the space X is a uniform space, with the uniform
topology.
The following lemma is useful for working with cardinal properties of locally

finite families. The proof is easy to check (for example, see [7]).
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Lemma 1. Let G be a locally finite family of subsets of X . If the power of G is at
most µ, then there exists an open covering B, of power at most µ, such that every

element of B meets only finitely many elements of G.

We recall that the uniform weight of X is the smallest cardinal number of a base
for the uniformity.
The following theorem is the uniform analogue of 2 ⇒ 1 in Theorem 1.

Theorem 2. Let µ be the uniform weight of X . If every open covering of power

at most µ is uniform, then every open covering is uniform.

We shall prove Theorem 2 in three steps (the statements of each step hold under
the hypotheses of Theorem 2).
Let {Uα : α < µ} be a base for the uniformity, consisting of open uniform

coverings.

Step 1. X is a paracompact topological space.

Proof: Let A be an open covering. For every x ∈ X , choose α(x) < µ such that
St(x,Uα(x)) is contained in some element of A. For every α, let

Aα =
⋃

α(x)=α

St(x,Uα(x)) .

By assumption, the covering {Aα : α < µ} is uniform.
The covering

B = {Aα ∩ St(x,Uα(x)) : α < µ, α(x) = α}

is an open refinement of A.
Since uniform coverings are normal coverings (in the sense of Tukey), by the

condition (g) in [9, Theorem 1.2] it follows that the covering B has an open star-
refinement.

�

A family F of subsets of X is said to be uniformly locally finite if there exists
a uniform covering B such that every element of B meets F in only a finite number
of elements.

Step 2. Every locally finite family F is uniformly locally finite.

Proof: We proceed by contradiction. Suppose that for every α there exist an
element Uα ∈ Uα and a countable subfamily Fα of F such that Uα ∩ F 6= ∅ for
every F ∈ Fα.
Let G be the union of all subfamilies Fα. G is a locally finite family of subsets

and the power of G is at most µ. By Lemma 1, there exists an open covering B
of power at most µ such that every element of B meets G only in a finite number
of elements. B is an open covering of power at most µ, which cannot be uniform
because the family G is not uniformly locally finite. This is a contradiction with
the hypothesis of Theorem 2. �
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Step 3. Every locally finite open covering A is uniform.

Proof: By Step 2, A is uniformly locally finite. For every α, by possibly refining
coverings Uα, we can assume that every element of Uα meets A only for a finite
number of elements.

If A is not a uniform covering, then for every α there exists Uα ∈ Uα such that
Uα \ A 6= ∅ for every A ∈ A.
Let Aα = {A ∈ A : A ∩ Uα 6= ∅} and let C =

⋃

α Aα.

Every Aα is a finite family, thus the power of C is at most µ. Therefore we have
a contradiction, because the open covering C ∪ {

⋃

(A \ C)}, of power at most µ,
cannot be uniform. In fact, for every α, Uα ∩ (

⋃

(A \ C)) = ∅ and Uα \ A 6= ∅ for
every A ∈ C. �

The conclusion of Theorem 2 follows from Step 1 and Step 3.

Remark. One might conjecture that every open covering is uniform, provided that
the open coverings of power less than µ are uniform coverings. This, however, is
not the case. For a counterexample, let X be the space of ordinals less than ω1,
equipped with the unique (precompact) uniformity (an open covering is uniform iff
it has a finite subcovering).

By countable compactness of X , every countable open covering is uniform and
it is easy to verify that the uniform weight of X is ω1. Furthermore, X is not
a paracompact topological space [4, p. 380].

2. Denote by C∗ the weak uniformity of continuous bounded real functions on
a completely regular Hausdorff space X .

X is a normal space iff every open covering consisting of two elements belongs
to C∗.

It is an interesting question to see when a uniformity finer than C∗ is fine.
For example, the implication 3 ⇒ 1 of Theorem 1 says that metric uniformities
finer than C∗ are fine. Another example of uniform space with this property are
sequentially uniform spaces [3].

In the next theorem, we extend the equivalences 1 ⇔ 3 ⇔ 4 of Theorem 1 to ωµ-
metric spaces. Notice that the proof of this theorem follows from ordinal properties.

An ωµ-metric space is a uniform space which admits a base of uniform coverings

B = {Uα : α < ωµ}

well ordered by refinement (hence by star-refinement) by a regular cardinal ωµ.

An ωµ-metric space is paracompact (ultra-paracompact if µ > 0) [1].

Let λ be a cardinal number. A topological space is said to be λ-compact if every
open covering has a subcovering of power less than λ. A weakly paracompact space
X is λ-compact iff the power of every discrete closed subset of X is less than λ (as
one can prove by mimicking the proof of [4, Theorem 5.3.2]).

In the proof of Theorem 3, the baseB is assumed well ordered by star-refinement.
The equivalence 1 ⇔ 2 has been already proved in [8].
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Theorem 3. Let X be an ωµ-metric space. The following conditions are equiva-

lent:

(1) every open covering is uniform;
(2) the set K of limit points is ωµ-compact and for every α the subspace

X \ St(K,Uα) is uniformly discrete;
(3) every finite open covering is uniform.

Proof: 1 ⇒ 3 Obvious.
3 ⇒ 2 By way of contradiction, assume that there exists a closed discrete subset

D = {xα : α < ωµ} of pairwise distinct limit points.
We shall prove that, for every α, one can choose β(α) ≥ α such that the collection

F = {St(xα,Uβ(α)) : α < ωµ} consists of pairwise disjoint subsets. We proceed

by transfinite induction. Choose β(0) ≥ 0 such that St(x0,Uβ(0)) is disjoint from

D \ {x0}. Let α > 0 and Cα =
⋃

γ<α St(xγ ,Uβ(γ)). The set Cα is closed, because

X is an ωµ-additive topological space [1]. The set C = Cα ∪{xγ : γ > α} is closed

and therefore there exists β(α) ≥ α such that the subset St(xα,Uβ(α)) is disjoint
from C.
Choose yα ∈ St(xα,Uβ(α)), yα 6= xα. The subset F = {yα : α < ωµ} has no

limit points and the open covering {X \ F, X \ D} cannot be uniform, because the
subsets F and D cannot be separated by a uniform covering.
What we still need to prove is that for every U ∈ B the subspace Y = X\St(K,U)

is uniformly discrete (notice that every subset of Y is closed in X). We argue by way
of contradiction. Again using transfinite induction, it is easy to choose elements xα,
yα such that yα ∈ St(xα,Uα) and xα 6= yβ for every α, β. Thus the open covering
consisting of X \ {xα : α < ωµ} and X \ {yα : α < ωµ} cannot be uniform. This
contradiction concludes the proof.

2 ⇒ 1
It is enough to prove that the trace onK of every open covering is a uniform cover-

ing ofK. This trace can be refined by a covering of the form {St(St(x,Uα(x)),Uα(x)) :

x ∈ K}. As K is ωµ-compact, the covering {St(x,Uα(x)) : x ∈ K} has a subcov-

ering of power less than ωµ, say {St(xi,Uα(xi)) : i < δ} for a suitable δ < ωµ.

Thus {St(x,Uγ) : x ∈ K} where γ = sup{α(xi) : i < δ} is the required uniform
refinement (see [4, Theorem 4.3.31]). �

Remark. It follows from the proof that the condition 2 of the above theorem can
be strengthened as follows:

(2’) the set K of limit points is ωµ-compact and every closed discrete subset of

X is uniformly discrete.

Remark. It is well-known that the fine uniformity on a metrizable topological
space X is a metric uniformity iff the set of limit points is compact (see for example
[10]).
We can see that an analogous result holds for ωµ-metrizable spaces: precisely,

if the subset K of limit points of an ωµ-metrizable space X is ωµ- compact, then
the fine uniformity is an ωµ-metric uniformity.
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Let
B = {Uα : α < ωµ}

be a well ordered base for a compatible uniformity. For every α, consider the open
covering

Vα =
{

{x}, U : U ∈ Uα, U ∩ K 6= ∅, x ∈ X \ St(K,Uα)
}

.

It is easy to check that C = {Vα : α < ωµ} is a well ordered (by refinement) base
which induces the fine uniformity (see Theorem 3).
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