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An example in the theory of approximate systems

N. Uglešić

Abstract. An approximate inverse sequence of plane continua is constructed which nega-
tively answers a question of S. Mardešić related to approximate and usual inverse systems.

The example also shows that an important result of M.G. Charalambous cannot be im-
proved. As an application, it is shown that a procedure of making an approximate inverse
sequence commutative (“taming”) is discontinuous.

Keywords: inverse systems, (gauged) approximate systems, inverse limits, (gauged) ap-
proximate resolutions, compact metric spaces

Classification: 54B25

1. Introduction.

S. Mardešić and T. Watanabe [5] have developed a theory of (gauged) approxi-
mate resolutions of spaces and mappings. It allows a successful study of a very broad
class of topologically complete spaces using the techniques of developing spaces into
(gauged) inverse systems and resolutions. The key idea was to replace the rigid
commutativity condition for inverse systems with a controlled nearness of bonding
mappings. It was done (for metric compacta) a little earlier by S. Mardešić and
L.R. Rubin [3]. That theory is based on three conditions, where two of them require
prescribing (in advance) normal coverings — meshes. Recently it has been shown
that only the “free” condition is essential ([1] partially for objects, [2] completely
for objects, [6] completely for objects and mappings). However, it seems that the
other two “gauging” conditions assure a useful and unavoidable technique required
for that theory ([6]).
From the very beginning of the study of approximate systems, the question of

possibility of their transformation (especially for sequences) into usual (commuta-
tive) ones arises. A partial answer for sequences of complete metric spaces is given
by M.G. Charalambous [1].
It is shown here that such a transformation is generally impossible even for

sequences of plane continua with surjective bonding mappings. Of course, it is an
affirmative result for the mentioned theory, for it proves the approximate systems
(even on the level of compact metric spaces) are something essentially new related
to usual inverse systems.
For the sake of completeness, let us briefly recall the main definitions from [5].

1.1. A (gauged) approximate (inverse) system is a collectionX = (Xa, Ua, paa′ , A)
consisting of:

– a preordered set A = (A, <) which is directed and unbounded;
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– for each a ∈ A, a (topological) space Xa and a normal covering (mesh) Ua

of Xa;
– for each related pair a < a′ in A, a (continuous) mapping paa′ : Xa′ → Xa

(paa = 1Xa
is the identity mapping on Xa).

These data are to satisfy the following three conditions:

(A1) (paa′pa′a′′ , paa′′) < Ua whenever a < a′ < a′′;
(A2) (∀ a ∈ A) (∀U ∈ Cov (Xa)) (∃ a′ > a)

(∀ a2 > a1 > a′) (paa1pa1a2 , paa2) < U;

(A3) (∀ a ∈ A) (∀U ∈ Cov (Xa)) (∃ a′ > a) (∀ a′′ > a′) Ua′′ < p−1
aa′′U.

Here, for any two mappings f, g : X → Y and any covering V of Y , (f, g) < V

means that for every x ∈ X there exists a V ∈ V such that f(x) and g(x) belong
to V . Instead of (f, g) < V we will often write f =V g. For coverings U, U ′ of X ,

U
′ < U means that U

′ refines U.
A normal covering of a space X is any open covering of X which admits a sub-

ordinate partition of unity. Therefore, normal coverings coincide with numerable
open coverings. The set of all normal coverings of X is denoted by Cov (X). If an
X ′ ⊆ X and a covering U of X are given, then the star of X ′ with respect to U

is the set

st(X ′, U) =
⋃

{U ∈ U | X ′ ∩ U 6= ∅} ⊆ X.

Recall that everyU ∈ Cov (X) admits aU ′ ∈ Cov (X) such that stU ′ = {st(U ′, U ) |
U ′ ∈ U ′} belongs to Cov (X) and stU ′ < U. We inductively define st0U ′ =
U ′, st1U ′ = stU ′, . . . , stnU ′ = {st(U, U ′) | U ∈ stn−1U ′}, n ∈ N, which all be-
long to Cov (X). The above definition may be written as stnU ′ = st(stn−1U ′, U ′).
(Often stnU ′ is incorrectly defined by stnU ′ = st(stn−1U ′) !)

1.2. A (gauged) approximate system X is called uniform provided the condition

(AU) Ua′ < p−1
aa′Ua, a < a′,

is satisfied.

1.3. A (gauged) approximate map q from a space Y into a (gauged) approximate
system X, q : Y → X, is any collection q = {qa | a ∈ A} = (qa) of mappings
qa : Y → Xa such that

(AS) For every a ∈ A and every U ∈ Cov (Xa) there exists an a′ > a so that
(qa, paa′′qa′′) < U whenever a′′ > a′.

1.4. A (gauged) approximate map p = (pa) : X → X is called a limit of X

provided it has the following universal property:

(UL) For any approximate map q : Y → X there exists a unique mapping
g : Y → X satisfying pag = qa for every a ∈ A.
Since a limit space X is determined up to a unique homeomorphism, we often

speak of the limit X of X and we write X = limX.

It is natural to take Theorem 2.8 from [5] as the definition of a (gauged) approx-
imate resolution of a space.
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1.5. An approximate resolution of a space X is an approximate map p : X → X

satisfying the following two conditions:

(B1) (∀U ∈ Cov (X)) (∃ a ∈ A) (∀ a′ > a) p−1
a′ Ua′ < U;

(B2) (∀ a ∈ A) (∃ a′ > a) (∀ a′′ > a′) paa′′(Xa′′) ⊆ st(pa(X), Ua).

A (gauged) approximate system X is said to be a (gauged) approximate resolu-
tion provided there exist a topologically complete space X and a (gauged) approx-
imate resolution p : X → X of X .

2. Example.

In the remaining part of this paper we consider only (gauged) approximate in-
verse sequences, especially, such resolutions. The following question was stated by
S. Mardešić:

2.1 Question. Let X = (Xn, pnn′ , N) (X = (Xn, Un, pnn′ , N)) be an approxi-
mate (gauged) inverse sequence with limit limX = X (limX = X). Let X =
(Xn, pn,n+1, N) be the usual (commutative) inverse sequence obtained by replacing
in X (X ) each pnn′ , n′ − n > 1, with the composition pn,n+1 ◦ · · · ◦ pn′−1,n′ . Is
limX ≈ X?

The following result of M.G. Charalambous ([1, Proposition 8]) directly relates
the above question:

2.2. Let X = (Xn, pnn′ , N) be an approximate sequence of complete metric spaces
with the limit limX = X . Then X is uniformly isomorphic to the limit limX ′,
where X ′ = (Xm, p′

mm′ , M) is the usual inverse sequence over a cofinal subset

M ⊆ N and p′
mm′ = pmm′ whenever m′ is an immediate successor of m in M .

Although that result encourages to answer the question affirmatively, we shall
show that generally it is not the case. Namely, a cofinal M ⊆ N cannot be replaced
by N even in the case of plane metric continua (and surjective bonding mappings;
see 2.6 below). Our counterexample will be properly adapted from Example 1 of [4].

2.3 Example. Let S1 = {z ∈ C | |z| = 1} be the standard unit circle based at
z = (1, 0). Let

∨

∞

k=1 Sk be the Hawaiian earring (i.e. the wedge of a sequence of

copies Sk, k ∈ N, of S1) embedded into the product space
∏

∞

k=1 Sk with the usual

product metric. Then
∨

∞

k=1 Sk is homeomorphic to X ⊆ R2, X =
⋃

∞

k=1Ck, where

Ck = {x = (ξ, η) ∈ R
2 | (ξ − (2k − 1)/2k)2 + η2 = 1/4k2}.

For every k ∈ N choose the homeomorphism hk : Ck → S1 defined by the radial
projection from the center point ((2k − 1)/2k, 0) of the circle Ck. Let us define the
sequence of mappings ϕn : X → X , n ∈ N, by putting

ϕn(x) =

{

x, x ∈ Ck and k 6= n+ 1

h−1n (hn+1(x)
2), x ∈ Cn+1 .

Observe that, for every n ∈ N and every x ∈ Cn+1, x, ϕn(x) ∈ Cn ∪ Cn+1. Take
now Xn = X for all n and define pnn′ : Xn′ → Xn, n

′ ≥ n, by

pnn′ =

{

1X , n′ − n 6= 1

ϕn, n′ − n = 1.
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Further, let Nn = {k ∈ N | k ≥ n} and Hn =
⋃

k∈Nn

Ck ⊆ Xn. Note that

x, ϕn(x) ∈ Hn for every x ∈ Hn+1. If n = 1, choose U1 = {H1 = X1}. If
n > 1, consider for each k ∈ {1, . . . , n − 1} all counterclockwise ordered n-tuples

(xk
1(n), . . . , x

k
n(n)) of points xk

j (n) ∈ Ck, xk
j (n) 6= x0 = (1, 0), j = 1, . . . , n, such

that each n-tuple determines n arcs on Ck of the same length. Obviously, for each
(xk
1(n), . . . , x

k
n(n)), only one arc, say 〈x

k
n(n), x

k
1(n)〉, contains the point x0. Denote

by L 0
n the set of all such open arcs Lk

n(x0) on all Ck containing x0, and by Ln the

set of all remaining such open arcs Lk
n on all Ck, k = 1, . . . , n − 1. Note that for

every Lk
n+1(x0) (L

k
n+1) there exists an Lk

n(x0) (L
k
n) such that Lk

n+1(x0) ⊆ Lk
n(x0)

(Lk
n+1 ⊆ Lk

n). Take now

Un =
{

Hn ∪
(

n−1
⋃

k=1

Lk
n(x0)

)

| Lk
n(x0) ∈ L

0
n

}

∪ Ln, n > 1.

Thus, Un ∈ Cov (Xn) for every n. In this way we have constructed the collection
X = (Xn, Un, pnn′ , N). Note that (Un) is a decreasing sequence in (Cov (X), <).
Furthermore, if δn = sup{diamU | U ∈ Un}, then δ1 = 1 and δn = diam(Hn ∪
L1n(x0)) = diamL1n = sin(π/n), n > 1. Therefore, (δn) is a decreasing sequence of
positive numbers converging to zero.

Lemma. X = (Xn, Un, pnn′, N) is a uniform gauged approximate system.

Proof: We are verifying the condition (A1), (A2), (A3) and (AU).

(A1) Let any n ≤ n′ ≤ n′′ in N be given. Among potentially nine essentially
various cases, only the following three are non-trivial:

(pnn′′ , pnn′pn′n′′) =











(1, ϕnϕn+1), n′′ = n′ + 1 > n′ = n+ 1

(1, ϕn), n′′ > n′ + 1 > n′ = n+ 1

(1, ϕn′), n′′ = n′ + 1 > n′ > n+ 1.

In the first case, only the points of (Cn+1 ∪ Cn+2) \ {x0} ⊆ Hn+2 are moving.
Because of ϕnϕn+1(Cn+1 ∪ Cn+2) = Cn, 1(Cn+1 ∪ Cn+2) = Cn+1 ∪ Cn+2 and
Cn ∪ Cn+1 ∪ Cn+2 ⊆ Hn ⊆ U ∈ Un, the condition (A1) for X is satisfied. In the
second (third) case, only the points of Cn+1 \{x0} (Cn′+1 \{x0}) are moving. Thus
the same argument holds.

(A2) Let any n ∈ N and U ∈ Cov (Xn) be given. Let δ > 0 be a Lebesgue number
of U. Choose an n0 ∈ N such that sin(π/n0) ≤ δ. Then Un′ < U whenever n′ ≥ n0.
Take now n′ = max{n0, n + 2}, and let any n2 ≥ n1 ≥ n′ be given. Observe that
pnn1 = pnn2 = 1, hence

(pnn2 , pnn1pn1n2) =

{

(1, 1), n2 − n1 6= 1

(1, ϕn1), n2 − n1 = 1.

Only the second case restricted to Cn1+1 \ {x0} ⊆ Hn1+1 is non-trivial. Because of
ϕn1(Cn1+1) = Cn1 , 1(Cn1+1) = Cn1+1 and Cn1 ∪ Cn1+1 ⊆ Hn1 ⊆ U ∈ Un1 ,

(1, ϕn1) < Un1 < Un′ < U
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holds true. This verifies the condition (A2) for X.

(A3) Let any n ∈ N and U ∈ Cov (Xn) be given. Take a Lebesgue number δ > 0
of U. Choose an n0 ∈ N satisfying sin(π/n0) ≤ δ. Then Un′ < U whenever
n′ ≥ n0. Take now n′ = max{n0, n + 2}, and let any n′′ ≥ n′ be given. Then
pnn′′ = 1, hence

Un′′ < Un′ < U = p−1
nn′′U

which establishes the condition (A3) for X.

(AU) Let any n ≤ n′ in N be given. If n′ = n or n′ > n+ 1, then pnn′ = 1. Since
(Un) decreases, the condition (AU) in those cases is trivially fulfilled. Let n

′ = n+1

and let any U ∈ Un+1 be given. If U ∩Cn+1 = ∅ then U = Lk
n+1 ∈ Ln+1 for some

k ∈ {1, . . . , n}. Therefore,

pn,n+1(U) = ϕn(L
k
n+1) = Lk

n+1 ⊆

{

H1 = X1 ∈ U1, n = 1

Lk
n ∈ Ln ⊆ Un, n > 1

.

If U ∩ Cn+1 6= ∅ then U = Hn+1 ∪ (
⋃n

k=1Lk
n+1(x0)) for some Lk

n+1(x0) ∈ L 0
n+1,

k = 1, . . . , n. Consequently,

pn,n+1(U) = ϕn(U) ⊆

{

H1 = X1 ∈ U1, n = 1

Hn ∪
(

⋃n−1
k=1 Lk

n+1(x0)
)

⊆ Hn ∪
(

⋃n−1
k=1 Lk

n(x0)
)

∈ Un,

n > 1.

This verifies the condition (AU) for X and finally proves the lemma. �

2.4. Take pn = 1 : X → X = Xn, n ∈ N. Then p = (pn) : X → X is an
approximate resolution of X . Indeed, one trivially checks the conditions (AS),
(B1)* and (B2)* for p (see [5, § 2]). Since each Xn = X is a metric compactum, p
is a limit, i.e. X = limX (see [5, 4.2] and [2, Remark 3]).

2.5. Let X = (Xn, pn,n+1, N) be the usual inverse sequence associated with X, i.e.
(pn,n+1 = ϕn)

pnn′ =

{

1, n′ = n

ϕn ◦ · · · ◦ ϕn′−1, n′ > n
.

As in Example 1 from [4], the limit space limX contains a diadic solenoid. There-
fore, limX cannot be isopmorphic to X = limX. This negatively answers the above
stated question.

2.6 Remark. Note that the bonding mappings pn,n+1 = ϕn of X are not surjec-
tive. Slightly modifying ϕn into ϕ′

n : X → X , n ∈ N,

ϕ′

n(x) =











x, x ∈ Ck and k < n+ 1

h−1n (hn+1(x)
2), x ∈ Cn+1

h−1
k−1hk(x), x ∈ Ck and k > n+ 1

and defining p′
nn′ : Xn′ → Xn by means of ϕ′

n and 1 (quite analogously to
pnn′ by ϕn and 1), one obtains the uniform gauged approximate inverse sequence
X ′ = (Xn, Un, p′

nn′ , N) with all bonding mappings surjective, which also negatively
answers the question.
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3. An application — “taming” of approximate sequences is discontinu-
ous.

3.1. We will construct a procedure of transforming of a (gauged) approximate se-
quence into the corresponding commutative inverse sequence keeping at each step
the same limit space. Even more, for (gauged) approximate resolutions, the iso-
morphism class of a starting resolution will be preserved throughout the whole
procedure. However, the commutative “limit” resolution will be, in general, out of
that class. (This result should be again treated affirmatively as well as the previous
one. An analogy with that one can find in the homotopy theory, where an expan-
sion of homotopy equivalent spaces may yield the homotopy non-equivalent “limit”
space. That was the origin for the shape theory!)

3.2. Let X = (Xn, Un, pnn′ , N) be a gauged approximate sequence. For each k ∈
N0 = (N ∪ {0},≤), define the collection X k = (Xn, U k

n , pk
nn′ , N) by putting

U
k

n =

{

Un, k = 0 or k > 0 and n > k

stk−n+1
Un, k > 0 and 1 ≤ n ≤ k

and

pk
nn′ =

{

pnn′ , k = 0 or n′ − n ≤ 1 or n′ > k + 2

pn,n+1 ◦ · · · ◦ pk+1,n′, k > 0, 1 ≤ n ≤ k and n+ 1 < n′ ≤ k + 2
.

Observe the following: X 0 =X;

X
1 is obtained by replacing of (in X

0) p013 = p13 with p113 = p012p
0
23 = p12p23,

and U 0
1 = U1 with U 1

1 = stU1;

X 2 is obtained by replacing of (in X 1) p114 with p214 = p113p
1
34 = p12p23p34, p224

with p224 = p123p
1
34 = p23p34, U

1
1 with U 2

1 = st2U1 and U 1
2 = U2 with U 2

2 = stU2;

X 3 is obtained by replacing of (in X 2) p215 with p315 = p214p
2
45 = p12p23p34p45,

p225 with p325 = p224p
2
45 = p23p34p45, p235 with p335 = p234p

2
45 = p34p45, U 2

1 with

U 3
1 = st3U1, U

2
2 with U 3

2 = st2U2 and U 2
3 = U3 with U 3

3 = stU3; etc.

Consequently, the “limit” object of the procedure from above is the collection
X ∞ = (Xn, U ∞

n , p∞
nn′, N), which is the corresponding commutative inverse se-

quence X = (Xn, pn,n+1, N) of X. Indeed,

p∞nn′ =

{

pnn = 1, n′ = n

pn,n+1 ◦ · · · ◦ pn′−1,n′ , n′ > n

holds by the construction. Note that, for each k ∈ N0, X k is a gauged ap-
proximate system and that X and X k share the common cofinal subsequence
Yk = (Xm, Um, pmm′ , Mk), whereMk = (Nk+1,≤). Therefore, limX k ≈ limYk ≈
limX ([5, 1.18]). But, as our previous example shows, in general limX 6≈ limX.

3.3. In the case of an approximate sequence that is an approximate resolution, the
following holds true:
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Claim. If a starting approximate sequence X belongs to the category APRES,
then X =X 0 ∼=X 1 ∼= · · · ∼=X k ∼= . . . However, generally, X 6∼= X in APRES.

In order to prove it, observe that Yk ∈ Ob (APRES), Yk
∼= X and Yk

∼= X k

in APRES (see [5, 8.12] and [7, 1.5]). Hence, X k ∼= X for all k ∈ N0. Now, if
we provide X with gauges (see [2, Theorem 1] or [6, 2.3]) such that it becomes an
approximate resolution X ∗, it may occur X ∗ 6∼=X in APRES. Namely, X ∼=X ∗

implies limX ≈ limX ∗ = limX which contradicts our example.
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