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Fσ-absorbing sequences in hyperspaces of subcontinua

Helma Gladdines

Abstract. Let D denote a true dimension function, i.e., a dimension function such that
D(Rn) = n for all n. For a space X, we denote the hyperspace consisting of all compact
connected, non-empty subsets by C(X). If X is a countable infinite product of non-
degenerate Peano continua, then the sequence (D≥n(C(X)))∞n=2 is Fσ-absorbing in C(X).
As a consequence, there is a homeomorphism h : C(X) → Q∞ such that for all n, h[{A ∈
C(X) : D(A) ≥ n + 1}] = Bn × Q × Q × . . . , where B denotes the pseudo boundary of
the Hilbert cube Q. It follows that if X is a countable infinite product of non-degenerate
Peano continua then D≥n(C(X)) is an Fσ-absorber (capset) for C(X), for every n ≥ 2.

Let dim denote covering dimension. It is known that there is an example of an every-
where infinite dimensional Peano continuum X that contains arbitrary large n-cubes, such
that for every k ∈ N, the sequence (dim≥n(C(Xk)))∞n=2 is not Fσ-absorbing in C(Xk). So
our result is in some sense the best possible.

Keywords: Hilbert cube, absorbing system, Fσ, Fσδ, capset, Peano continuum, hyperspace,
hyperspace of subcontinua, covering dimension, cohomological dimension

Classification: 57N20

1. Introduction.

If X is a compact metric space then 2X denotes the hyperspace of all nonempty
closed subsets of X topologized by the Hausdorff metric. The subspace of 2X

consisting of all connected sets is denoted by C(X). For k ∈ {0, 1, . . . ,∞} and

a dimension function D, let D≥k(2X) denote the subspace of 2X consisting of all at

least k-dimensional elements of 2X . We define Dk(2X), D≥k(C(X)) and Dk(C(X))
in the same way. Let Q denote the Hilbert cube and dim covering dimension. In [10]

it is proved that there exists a homeomorphism f : 2Q → Q∞ such that for every
k ≥ 0,

(1) f [dim≥k(2Q)] = B × · · · ×B
︸ ︷︷ ︸

k times

×Q×Q× . . . ,

where B is the pseudo-boundary of Q. As a consequence,

(2) f [dim∞(2Q)] = B∞.

The proof of (1) is based in an essential way on the “convex” structure of Q as
well as on the technique of absorbing systems. There are results generalizing (1)
and (2). In [6] it is proved that in (2) one can replace the Hilbert cube by a count-
able infinite product of non-degenerate Peano continua. In the same paper an
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example is constructed of an everywhere infinite dimensional Peano continuum X

such that dim∞(2Xk
) is not homeomorphic to B∞ for all k ∈ N. In [7] is showed

that it is also possible to replace the Hilbert cube by a countable infinite product
of non-degenerated Peano continua in (1). It is also sometimes possible to replace
the covering dimension by another dimension function. In [9] it is proved that this
is possible in (1) for any true dimension function, in particular the cohomologi-
cal dimension dimG for an Abelian group G. Dobrowolski and Rubin have also
a generalization for hyperspaces of subcontinua. In [9] they prove that for any true
dimension function D there is a homeomorphism f : C(Q) → Q∞ such that for
every k ≥ 2,

(3) f [D≥k+1(C(Q))] = B × · · · ×B
︸ ︷︷ ︸

k times

×Q×Q× . . . .

Since we know that for a Peano continuum X that has no free arcs, the hyper-
space C(X) is a Hilbert cube, it is natural to wonder whether we can replace the
Hilbert cube in (3) by other spaces. In this paper we show that for a space X
that is a countable infinite product of non-degenerate Peano continua and D a true
dimension function, the sequence

(
D≥n(C(X))

)∞
n=2 is Fσ-absorbing in C(X). As

a consequence we find that for such a space X and n ≥ 2, the set D≥n(C(X)) is
a capset for C(X). This is nice because there are not many natural capsets known
for C(X).

The example presented in [6] of an everywhere infinite dimensional space X such

that for no k ∈ N, the set dim∞(2Xk
) is homeomorphic to B∞, also works for

C(Xk), i.e., for no k ∈ N, the set dim∞(C(Xk)) is homeomorphic to B∞. This

implies that for no k ∈ N the sequence
(
dim≥n(C(Xk))

)∞
n=2 is Fσ-absorbing.

A combination of some ideas in this paper and [7] can be used to show that in (1)
the Hilbert cube can be replaced by a countable infinite product of non-degenerate
Peano continua and (at the same time) the covering dimension by an arbitrary true
dimension function. See also the Remark at the end of this paper.

2. Terminology.

All spaces under discussion are separable and metrizable. For any space X we
let d denote an admissible metric on X , i.e., a metric that generates the topology.
All our metrics are bounded by 1. We use dim to denote the covering dimen-
sion. Following the terminology in [9] we say that a dimension function D is true
if D(Rn) = n for all n. Examples of true dimension functions are dim and the
cohomological dimension dimG for any Abelian group G. In this paper D denotes
an arbitrary true dimension function.

As usual I denotes the interval [0, 1] and Q the Hilbert cube
∏∞

i=1[−1, 1]i with

metric d(x, y) =
∑n

i=1 2−(i+1)|xi − yi|. In addition s is the pseudo-interior of Q,
i.e., {x ∈ Q : (∀i ∈ N)(−1 < xi < 1)}. The complement B of s in Q is called the
pseudo-boundary of Q. Any space that is homeomorphic to Q is called a Hilbert
cube. If X is a set then the identity function on X will be denoted by 1X .

Let A be a closed subset of a space X . We say that A is a Z-set provided
that every map f : Q → X can be approximated arbitrarily closely by a map
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g : Q → X \ A. The collection of all Z-sets in X will be denoted by Z(X).
A countable union of Z-sets is called a σZ-set. A Z-embedding is an embedding
the range of which is a Z-set.

Let M be a class of spaces that is topological and closed hereditary.
Let Γ be an ordered set. An MΓ-system in a space X is an order preserving

indexed collection (with respect to inclusion) (Aγ)γ∈Γ of subsets of X such that
Aγ ∈ M for every γ. Let S = (Sγ)γ∈Γ be an order preserving indexed collection of
subsets of a space X . The following definitions can be found in [10] (see also [8]).
For more information (such as historical comments), see [10].

Definition. The system S is called stronglyMΓ-universal in X if for every MΓ-
system (Aγ)γ∈Γ in Q, every map f : Q → X that restricts to a Z-embedding
on some compact subset K of Q, can be approximated arbitrarily closely by a Z-
embedding g : Q → X such that g | K = f | K while moreover for every γ ∈ Γ we
have g−1(Sγ) \K = Aγ \K.

Definition. The system S is called MΓ-absorbing in X if:

(1) S is an MΓ-system;
(2)

⋃

γ∈Γ Xγ ⊆
⋃∞

i=1Ai, where each Ai is a compact Z-set in X ;

(3) S is strongly MΓ-universal in X .

In this paper we only use absorbing sets (Γ = {pt}) and absorbing sequences
(Γ = N with the inverted order).

Theorem 2.1 ([10]). Let X be a Hilbert cube and let A = (Aγ)γ∈Γ and B =
(Bγ)γ∈Γ beM-absorbing systems for X . Then there is a homeomorphism h : X →
X with h[Aγ ] = Bγ for every γ. Moreover, h can be chosen arbitrarily close to the
identity.

�

There are three absorbers that are important in the present paper. The first
one is an absorber for the class consisting of all finite-dimensional compacta. Such
absorbers were first constructed by Anderson and Bessaga and Pe lczyński [1] and
were called fd-capsets by Anderson. A basic example of an fd-capset in Q is

{x ∈ Q : (∃N ∈ N)(∀n ≥ N)(xn = 0)}.

For details see [1]. The second one is an absorber for the class of all (sigma)
compacta. Again, such absorbers were first constructed by Anderson and Bessaga
and Pe lczyński: they were called capsets by Anderson. A basic example of a capset
in Q is B. For details see [1]. The third one is an absorbing sequence for the Borel
class Fσ. A basic example of an Fσ-absorbing sequence is the sequence (Bn ×Q×
Q× . . . )∞n=1 in the Hilbert cube Q∞. For details see [10].

Definition. A subset A of a space X is locally homotopy negligible in X if for
every map f : M → X , where M is any ANR, and for every open cover U of X
there exists a homotopy H : M × I → X such that {H({x} × I)}x∈M refines U ,
H0 = f and H

[
M × (0, 1]

]
⊆ X \A.
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If A is an M-absorber in X and if M contains the class of all finite-dimensional
compacta then both A and X \A are locally homotopy negligible in X ([8, Corollary
4.3]). So it follows in particular that if E is one of the absorbers for Q mentioned
above, then there is a homotopy H : Q × I → Q such that H0 = 1Q and H

[
Q ×

(0, 1]
]
⊆ E. This can also be seen by noting that on the one hand for the basic

examples of absorbers such homotopies exist and that on the other hand every
absorber is “equivalent” to its own model (Theorem 2.1).

Let X be a non-degenerate Peano continuum. The subspace of 2X consisting of
all finite non-empty subsets of X of cardinality at most n is denoted by Fn(X) and
F(X) denotes

⋃∞
n=1 Fn(X).

We will need the following result.

Theorem 2.2 ([5]). LetX be a non-degenerate Peano continuum. Then dim≥1(2X)

is a capset (Fσ-absorber) for 2X .
�

Let X be a Peano continuum. It follows from [2] that X admits a so-called
convex metric d. For such a metric it is known (and easy to prove) that the function

H : 2X × I → 2X defined by H(A, t) = {x ∈ X : d(x,A) ≤ t} is continuous. From
now on we assume that all metrics on Peano continua are convex.

On a product space X =
∏∞

n=1Xn we will always use the admissible metric d
on X given by

d(x, y) =

∞∑

n=1

2−ndn(xn, yn) (x, y ∈ X)

where for every n, dn is a metric on Xn that is bounded by 1. We also let for every
m, πm be the projection X → Xm and Πm the projection X → X1 × · · · × Xm.
Note that if for two points x, y ∈

∏∞
n=1Xn we have that πi(x) = πi(y) for all i ≤ N ,

then their distance is ≤ 2−N .
On the hyperspace 2X consisting of all non-empty closed subsets of X , the Haus-

dorff metric is given by

dH (E,F ) = inf{ε > 0 : E ⊆ B(F, ε) and F ⊆ B(E, ε)}

where d is a metric on X and B(C, δ) consists of all points x ∈ X such that
d(x,C) < δ. On C(X) we will use the same metric.

We will denote the distance between functions f, g : X → Y by

d̂(f, g) = sup{d(f(x), g(x)) : x ∈ X} ∈ [0,∞],

where d is an admissible metric for Y .

3. The set D≥2(C(X)) is a σZ-set in C(X).

The main result in this section is that for a Peano continuum X and n ≥ 2, the
set D≥n(C(X)) is a σZ-set in C(X). This is a step in the proof that the sequence
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(D≥n(C(X)))∞n=2 is Fσ-absorbing in C(X) if X is a countable infinite product of
Peano continua. The maps that we construct in this section are somewhat more
complicated than necessary to derive the main result of this section. The reason for
that is that we will need these more complicated maps later on.

Let X be a Hilbert cube and (Bi)
∞
i=1 a tower in X . We say that (Bi)

∞
i=1 has the

mapping approximation property if, for every ε > 0, every k ∈ N and every map
f : Ik × I → X such that f [Ik × {0}] ⊆ Bi for some i, there exist a j ∈ N and

a map g : Ik × I → Bj with d̂(f, g) < ε and g | Ik × {0} = f | Ik × {0}.

We say that (Bi)
∞
i=1 has the deformation property if there exists a deformation

h : X×I → X with h | X×{0} = 1X and such that for each t > 0, h[X×[t, 1]] ⊆ Bi

for certain i.

The following theorem is a reformulation of a result in [3, the proof of Theo-
rem 4.6].

Theorem 3.1. Let (Bi)
∞
i=1 be a tower of compacta in a Hilbert cube X such that

(Bi)
∞
i=1 has the mapping approximation property. Then (Bi)

∞
i=1 has the deforma-

tion property.

�

We will need the following well-known lemma.

Lemma 3.2 ([4]). For each n ≥ 1, there exists a map r : Bn+1 → F3(Sn) such
that r(b) = {b} for all b ∈ Sn.

�

The following Theorem is essentially [4, Lemmas 4.4. and 4.6]. It is clear that
a modification of the proofs given there can be used to prove the following result.
Since we are dealing in this paper with an infinite product of Peano continua we
will give an easier proof for this situation.

Theorem 3.3. Let X be a countable infinite product of non-degenerate Peano
continua. Then there exists a sequence (Γi)

∞
i=1 of (connected) graphs in X such

that:

(1) for all i ∈ N, Γi ⊆ Γi+1,

(2)
⋃∞

i=1 Γi = X ,
(3) for all x, y ∈ Γi, there exists a path γ in Γi+1 between x and y with

diam (γ) < d(x, y) + 1
i ,

(4) the tower (Fi(Γi))
∞
i=1 has the mapping approximation property,

(5) the projection Πm(Γn) of Γn on X1 × · · · × Xm is a finite graph for all
m ≥ n+ 1,

(6) there is a point (c1, c2, . . . ) ∈ X such that πm(Γn) = {cm} for allm ≥ n+1.

Proof: Choose for every n ∈ N an arc Yn ⊆ Xn and a homeomorphism βn : I →
Yn. (We use here that the factors of X are non-degenerate.) We put cn = βn(0).
Let

Σn = {x ∈ X : πm(x) = cm for all m > n}.
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Observe that
⋃∞

n=1 Σn is dense in X . Choose a countable, dense subset {x1, x2, . . . }
of X such that {x1, . . . , xn} ⊆ Σn for all n. We will construct the graphs Γi in such
a way that {xi, . . . , xi} ⊆ Γi for every i. This will take care of (2).

Let Γ1 be the point x1. Let Γ̃2 be an arc in X1 × X2 containing the points
(π1(x1), π2(x1)) and (π1(x2), π2(x2)). Define Γ2 = Γ̃2 × {c3} × {c4} × . . . . Note
that Γ1 and Γ2 are as required.

Assume Γ1, . . . ,Γn have been chosen such that:

(i) for all 1 ≤ i < n, Γi ⊆ Γi+1,
(ii) for all 1 ≤ i ≤ n, {x1, . . . , xi} ⊆ Γi,

(iii) for all 1 ≤ i < n and x, y ∈ Γi, there exists a path γ between x and y in

Γi+1 such that diam (γ) < d(x, y) + 1
i ,

(iv) for all 1 ≤ i ≤ n, Γi ⊆ Σi.

Let T be a triangulation of Γn with mesh (T ) < 1
7n . For each pair of distinct

vertices v, w of T , choose an arc α between v and w in X with diam (α) < d(v, w)+
1

14n . We may assume that these arcs are contained in Σn.

This can be seen as follows. Let ṽ and w̃ be the projections of v and w
on X1×· · ·×Xn. Choose an arc α̃ between ṽ and w̃ with small diameter.
Now let α between v and w be the arc α = α̃× {cn+1} × {cn+2} × . . .

We wish to adjoin these arcs α1, . . . , αn to Γn, as a part of the procedure for con-
structing a graph Γn+1 satisfying the condition (iii) of the inductive requirements.
Of course, Γn ∪ α1 ∪ · · · ∪ αk may fail to be a graph. To obtain a graph we must
partially reroute the paths given by {α1, . . . , αk}.

Consider the arc α1. Let ψ1 : I → α1 be a homeomorphism and let

Γ1
n = Γn∪

{(π1(ψ1(t)), π2(ψ1(t)), . . . , πn(ψ1(t)), βn(
1

n
t(1 − t)), cn+2, cn+3, . . . ) : t ∈ I}.

In order to make the arc α1 disjoint from points in Γn, we replace α1 by a close arc
α∗1, having the same boundary points as α1. We may assume that the length of the

arc α∗1 differs less than 1
14n from the diameter of the arc α1. This is so because we

can assume that βn( 1
n t(1 − t)) is close to cn. Now we want to add the arc α2. We

might get into trouble by adding it in the same way as the arc α1. Therefore we
have to proceed with a little more care. Let ψ2 : I → α2 be a homeomorphism. It
is obvious that we can define a continuous function φ : I → I such that for points
ψ(t) that are not on the boundary of α2 we have

(π1(ψ2(t)), π2(ψ2(t)), . . . , πn(ψ2(t)), βn(φ(t) · t · (1 − t)), cn+2, cn+3, . . . ) /∈ Γ1
n.

Now it is clear how to define Γ2
n; put

Γ2
n = Γ1

n∪

{(π1(ψ2(t)), π2(ψ2(t)), . . . , πn(ψ2(t)), βn(
1

n
φ(t) · t · (1 − t)), cn+2, cn+3, . . . ) : t ∈ I}.
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Note that we defined the map φ in such a way that the “image” α∗2 of α2 does not

intersect Γ1
n, in other than the points on the boundary. We again assume that φ(t)

is such a small function that the diameters of α2 and α∗2 differ at most 1
14n .

Continuing this procedure, we obtain a graph Γk
n in which we added one by

one the arcs α∗i that we derived from αi. We claim that this graph satisfies the
condition (iii) of the inductive requirements.

Choose arbitrary points x, y ∈ Γn, Let v be a vertex of a simplex in T
containing x and let w be a vertex of a simplex in T containing y. Then
there are arcs ηx between x and v and ηy between y and w in Γn such that

diam (ηx) and diam (ηy) are at most 3
7n . For some j, αj is an arc between

v and w and so is the added arc α∗j . We constructed α∗j in such a way that

diam (α∗j ) < d(v, w)+ 3
7n . Thus γ = ηx∪α∗j ∪ηy provides a path between

x and y in Γk
n with diam (γ) < 3

7n + 3
7n + d(v, w) + 1

7n ≤ d(x, y) + 1
n .

Since X is path-connected, the graph Γk
n may be extended, if necessary, to pro-

duce a graph Γn+1 containing xn+1. It is clear that this extension of the graph is
possible in Σn+1.

Now we will prove the mapping approximation property for the tower (Fi(Γi))
∞
i=1.

Let k ∈ N, ε > 0 and let f : Ik × I → 2X be a map such that f [Ik × {0}] ⊆ Fi(Γi)

for certain i. Let R be a triangulation of Ik such that diam (τ) < 1
24ε for ev-

ery τ ∈ R. Let E = {x1, x2, . . . } be a countable dense subset of
⋃∞

n=1 Γn as the

above. We will define g on the vertices R(0) of R and extend g inductively over

the higher dimensional simplices in R. Define g : R(0) → E ∪ Fi(Γi) such that

g | R(0) ∩ (Ik × {0}) = f and d(f(v), g(v)) < 1
24ε for every vertex v of R. Since

R(0) is finite and E ⊆
⋃∞

n=1 Fn(Γn), we may assume g[R(0)] ⊆ Fj(Γj) for some

j > i such that 1
j <

1
24ε. Now consider a 1-simplex of Ik × (0, 1] with endpoints v1

and v2 and barycenter σ. Put g(σ) = {g(v1), g(v2)}. Since d(g(v1), g(v2)) < 1
8ε, it

follows that there exist paths in F2j(Γj+1) between g(σ) and g(vi) with diameter

< 1
6ε. Using such paths we obtain a map g : R(1) → F2j(Γj+1) of the 1-skeleton

with g | Ik × {0} = f and

d(f(p), g(p)) ≤ diam (f(σ)) + d(f(v), g(v)) + diam (g(σ))

<
1

24
ε+

1

24
ε +

1

6
ε

=
1

4
ε

where σ is some 1-simplex with vertex v containing p.
Using Lemma 3.2, we inductively extend g over the higher dimensional simplices

in R, thereby obtaining a map g : Ik × I → F2j·3k(Γj+1) ⊆ F2j·3k(Γ2j·3k) with

g | Ik × {0} = f and d̂(f, g) < ε. �
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Lemma 3.4. There is a homotopy Rn : Γn × I → Γn+1 such that

(1) Rn(x, 0) = {x} for all x ∈ Γn,

(2) dH ({x}, Rn(x, t)) ≤ t+ 2
7n ,

(3) if x, y ∈ Γn and d(x, y) = t then Rn(x, t+ 4
7n ) is a connected subset of Γn+1

containing both x and y.

Proof: Fix n ∈ N. Let {σ1, . . . , σp} be a triangulation of Γn in maximal 1-

simplexes with diameter at most 1
7n , as in Theorem 3.3. We assume that the

triangulation of Γn+1 has the same vertex set, i.e., we assume that the added
arcs α∗j contain no points of the vertex set different from the boundary points

of αj . Let {vi, wi} be the vertices of the simplex σi. For every simplex σi, let
ri : [0, d(vi, wi)] → σi be a homeomorphism. We first define for every x ∈ Γn

a map sx : {vertices } → [0,∞). We say that a sequence v0, . . . .vm provides a path
between v0 and vm in Γn+1 if for every 1 ≤ p ≤ m the set {vp−1, vp} is the vertex
set of some simplex in Γn+1. There are two situations to consider. First assume
that x is a vertex point of the given triangulation of Γn+1. Then

sx(v) = min{
m∑

k=1

d(vk, vk+1) : where x = v1, v2, . . . , vk+1 = v

is a path between x and v in the graph Γn+1}.

If x is not a vertex point of x we first define what s is in the vertex points of the
simplex σi that contains x and extend it over the rest of the vertex set.

sx(v) = min{|r−1
i (x) − r−1

i (v1)| +

m∑

k=1

d(vk, vk+1) :

where v1 is a vertex point of σi and

v1, v2, . . . , vk+1 = v is a path between

v1 and v in the graph Γn+1}.

Note that the map sx measures in some sense how far a vertex point is away from x.
Observe that the map x → sx is continuous. To obtain the desired homotopy Rn,
we need to extend sx to a map on all of Γn+1. To this end, let

sx(y) = |r−1
i (x) − r−1

i (y)|,

if x and y are both contained in the simplex σi, and

sx(y) = min{sx(vj) + |r−1
j (vj) − r−1

j (y)|, sx(wj) + |r−1
j (wj) − r−1

j (y)|}

if y is an element of the simplex σj and x /∈ σj . An easy check shows that the map
sx is continuous and that moreover the map S : Γn × Γn+1 → [0,∞) is continuous.
Now we have what we need to define our homotopy Rn. Let

Rn(x, t) = {y ∈ Γn+1 : S(x, y) ≤ t}.
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It is clear that Rn(x, t) is continuous and Rn(x, 0) = {x} for all x ∈ Γn. We claim

that dH(Rn(x, t), {x}) ≤ t + 2
7n . Let y ∈ Rn(x, t). If x and y are in the same

simplex, obviously d(x, y) ≤ 1
7n ≤ t+ 2

7n . If x and y are in different simplices, then
there is a path v1, . . . , vk of vertex points in Γn such that v1 and x are contained
in the simplex σi and vk and y are contained in some other simplex σj . By the
definition of sx it follows that if y ∈ Rn(x, t), we have that

|r−1
i (x) − r−1

i (v1)| +

k−1∑

n=1

d(vn, vn+1) + |r−1
j (vk) − r−1

j (y)| ≤ t.

Hence
|r−1

i (x) − r−1
i (v1)| + d(v1, vk) + |r−1

j (vk) − r−1
j (y)| ≤ t.

We find that

d(x, y) ≤ d(x, v1) + d(v1, vk) + d(vk, y) ≤
1

7n
+ t+

1

7n
= t+

2

7n
.

It also is clear that if t > 0 then the set Rn(x, t) consists of more than one point
and is connected. Now we have to prove that for points x, y ∈ Γn with d(x, y) = t,

the set Rn(x, t + 3
7n ) is connected and contains {x, y}. That x ∈ Rn(x, t + 3

7n )

and Rn(x, t + 3
7n ) is connected is clear. It remains to prove that this set contains

y. Note that there are simplexes σ and τ containing x and y respectively, with
diam (σ) ≤ 1

7n and diam (τ) ≤ 1
7n , hence there are vertices v of σ and w of τ such

that d(v, w) ≤ d(x, y) + 2
7n . This implies that we added a path α∗j between v and

w to Γn in the procedure to obtain Γn+1. The way we defined Rn now implies that

Rn(x,
1

7n
) ⊇ σ,

Rn(x, t+
3

7n
) ⊇ σ ∪ α∗j

and

Rn(x, t+
4

7n
) ⊇ σ ∪ α∗j ∪ τ.

The last equation implies that Rn(x, t+ 4
7n ) contains y, as desired. �

Lemma 3.5. Let (Γi)
∞
i=1 be a tower of graphs as in Theorem 3.3 for some countable

infinite product of Peano continuaX . Then for every n ∈ N there exists a homotopy
G : 2Γn × I → 2Γn+1 such that for every A ∈ 2Γn that is t-close to a connected

subset of X , and every s ≥ 2t we have G(A, s) ∈ C(Γn+1) and d̂(Gt, 12Γn ) ≤ t+ 1
n .

Proof: Fix n ∈ N for the rest of the proof. Let Rn : Γn × I → C(Γn+1) denote
the “growth homotopy” for Γn in Γn+1 as in Corollary 3.4. Define

G(A, t) =
⋃

{Rn(a, t+
4

7n
) : a ∈ A}.
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We claim that this is the map as required. Note that G(A, t) is compact for every
t and A. Assume that A is t-close to a connected set of X . We shall prove that for
s ≥ 2t the set G(A, s) is a connected subset of Γn+1. If A itself is connected, this
is clear. We prove that G(A, 2t) is connected. The result for s ≥ 2t then follows

easily. Assume that G(A, 2t) = Rn(A, 2t+ 4
7n ) is not connected. Then we can write

A = B ∪ C where B and C are non-empty closed subsets of A and

Rn(B, 2t+
4

7n
) ∩Rn(C, 2t+

4

7n
) = ∅.

Since A is t-close to a connected subset of X , we have that

{x ∈ X : d(x,B) ≤ t} ∩ {x ∈ X : d(x,C) ≤ t} 6= ∅.

We can find points b ∈ B and c ∈ C such that d(b, c) ≤ 2t. Now the assertion
follows from (3) in Lemma 3.4.

Choose A ∈ 2Γn and t > 0. For every a ∈ A we have

dH ({a}, Rn(a, t+
4

7n
)) ≤ t+

4

7n
+

2

7n
≤ t+

1

n
.

Thus dH(A,G(A, t)) ≤ t+ 1
n . �

We now come to an important result.

Proposition 3.6. Let X be a Peano continuum that contains no free arcs. Then
dim≥n+1(C(X)) is a σZ-set in C(X) for all n ∈ N.

Proof: It is clear that for all n ∈ N the set dim≥n+1(C(X)) is σ-compact, thus the
only thing to prove is the approximation property. We shall show that dim≥2(C(X))
is σZ-set. It follows that for any n ≥ 2, the set dim≥n(C(X)) is a σ-compact subset
of a σZ-set and hence a σZ-set itself.

Find a tower (Γi)
∞
i=1 of graphs in X such that (Fi(Γi))

∞
i=1 has the mapping

approximation property as in Theorem 3.3. Choose ε > 0 and a map f : Q→ C(X).

Let H : C(X) × I → 2X be a map such that H0 = 1C(X) and H [C(X) × [ 1
n , 1]] ⊆

Fj(n)(Γj(n)) for a strictly increasing sequence j(1), j(2), . . . ⊆ N. Note that we

may assume that d̂(12X , Ht) ≤ t for all t. Find K ∈ N such that 1
K ≤ ε

8 . Define

h : Q → 2X by h(x) = H(f(x), 1
K ). Then d̂(f, h) ≤ 1

K and h[Q] ⊆ Fj(m)(Γj(m))

for all m ≥ K. We adjust the map h to get the approximation of f that we need.
Observe that for any x ∈ Q, h(x) is 1

K -close to a connected subset of X . Let

G : Γj(K)× I → 2Γj(K)+1 be the homotopy of Lemma 3.5. Then g(x) = G(h(x), 2
K )

is the desired approximation of f . Because h(x) is 1
K -close to a connected subset of

X , G(h(x), 2
K ) is connected. We find d̂(f, g) ≤ d̂(f, h) + d̂(h, g) ≤ 1

K + 2
K + 1

j(K)
≤

4
K < ε. Observe that for every x ∈ Q, g(x) ∈ C(Γj(K)+1), thus dim(g(x)) ≤ 1 for

all x ∈ Q. This implies that dim≥2(C(X)) ∈ Zσ(C(X)). �

We now derive the main result of this section.
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Theorem 3.7. Let X be a countable infinite product of non-degenerate Peano
continua and D a true dimension function. Then D≥n+1(C(X)) is a σZ-set in
C(X) for all n ≥ 1.

Proof: We may assume that X is a closed subset of Q. By [9, Corollary 3.3] we

have that D≥n(2X ) is an Fσ subset of 2Q. Thus D≥n(2X ) is an Fσ subset of 2X

and hence D≥n(C(X)) is an Fσ subset of C(X).
To see that D≥n+1(C(X)) is locally homotopy negligible, we only have to show

that this is the case for n = 2. As in [9, Lemma 5.3] observe that D≥2(C(X)) ⊆
dim≥2(C(X)) ([9, Theorem 2.9]) and use Proposition 3.6 to conclude that
D≥2(C(X)) is locally homotopy negligible. �

4. Auxiliary homotopies in C(X).

In this section we construct some useful homotopies. The homotopy in the fol-
lowing lemma is essential in the proof of the main result in this paper.

Lemma 4.1. Let X =
∏∞

k=1Xk be a countable infinite product of Peano continua.
Then for every point (c1, c2, . . . ) ∈ X , we can find a sequence i1 < i2 < i3 < · · · ∈ N

and homotopies Λ : C(X) × I → C(X) and� : C(X) × I → 2X such that

(1) �0 = 1 | C(X),
(2) �[C(X) × (0, 1]] ⊆ F(X),

(3) d̂(�t, 1) ≤ t,
(4) Λ0 = 1 | C(X),
(5) �(A, t) ⊆ Λ(A, t) for all A and t,

(6) d̂(Λt, 1) ≤ 13t,

(7) if t ∈ [2−n, 2−(n−1)] then for all m ≥ in + 1 we have πm[�(A, t)]
= πm[Λ(A, t)] = {cm},

(8) if t ∈ [2−n, 2−(n−1)] then for all m ≥ in we have that the projection
Πm[Λ(A, t)] of Λ(A, t) on X1 × · · · × Xm is at most one-dimensional for
every true dimension function.

Proof: Choose a point (c1, c2, . . . ) ∈ X . Find a tower (Γi)
∞
i=1 of graphs as in

Theorem 3.3 for the space X and the point (c1, c2, . . . ). Let � : C(X) × I → 2X

be a homotopy such that

(i) d̂(�t, 1) ≤ t,

(ii) �[C(X) × [ 1
n , 1]] ⊆ Fjn

(Γjn
), for all n ∈ N and some strictly increasing

sequence j1, j2, . . . .

Note that this map � and the point (c1, c2, . . . ) are as required.
We now construct the homotopy Λ. Let in = jn+1 + 1. Note that the sequence

i1, i2, . . . is strictly increasing. Let Rn : Γn × I → C(Γn+1) be the “growth homo-

topy” of Corollary 3.4. Define maps gn : [0, 1] → [0, 2] such that gjn
| [ 1

n+1 ,
1
n ] = 2

n

and gjn
| [0, 1

n+2 ] ∪ [ 1
n−1 , 1] = 0.

Define Λ : C(X) × I → C(X) by the formula

Λ(A, t) =
∞⋃

n=1

{Rjn
[�(A, t) × {gjn

(t)}]}.
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We claim that Λ is as required. That Λ is continuous follows from the continuity of
all used maps. Note that

Λ(A, 0) =

∞⋃

n=1

{Rj(n)[�(A, 0) × {gjn
(0)}]}

=

∞⋃

n=1

{Rj(n)[A× {0}]}

= A.

It is clear that Λ0 has all the required properties. Now take t > 0. Assume
t ∈ [ 1

m+1 ,
1
m ]. Then

Λ(A, t) =

∞⋃

n=1

{Rjn
[�(A, t) × {gjn

(t)}]}

=

m+1⋃

n=m−1

{Rjn
[�(A, t) × {gjn

(t)}]}.

Note that Λ(A, t) is compact, because it is a finite union of continuous images of
�(A, t). Observe that �(A, t) is finite, say {a1, . . . , ak}. For every 1 ≤ i ≤ k, the
set Rs(ai, gs(t)) is connected and contains ai, thus in particular Λ(A, t) ⊇ �(A, t).

We also know that the set Rjm
[�(A, t) × {gjm

(t)}] = Rjm
[�(A, t) × { 2

m}] is

connected, because �(A, t) is t ≤ 1
m -close to the connected set A. This implies

that Λ(A, t) is connected.

Observe that the sets Rjm−1 [�(A, t) × {gjm−1(t)}], Rjm
[�(A, t) × {gjm

(t)}]
and Rjm+1 [�(A, t) × {gjm+1(t)}] are subsets of finite graphs. Since for compact
polyhedra P we know that dim(P ) = 1 implies D(P ) = 1 [9], we find that Λ(A, t)
is at most one-dimensional for every true dimension function.

Note that for k ≥ im = jm+1 + 1 we have

πk[Λ(A, t)] = πk[
m+1⋃

n=m−1

{Rjn
[�(A, t) × {gjn

(t)}]}]

=

m+1⋃

n=m−1

{πk[Rjn
[�(A, t) × {gjn

(t)}]]}

= {ck}.

This implies also that Λ(A, t) is of the form Ã×{cim}× {cim+2}× · · · , where Ã
has the same dimension as Λ(A, t). The conclusion is that Λ satisfies (8).
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We also have

dH(Λ(A, t), A) ≤ dH(A,�(A, t)) + dH(�(A, t),Λ(A, t))

≤ t+ dH (Rjm−1
[�(A, t) × {gjm−1

(t)}],�(A, t))

+ dH(Rjm
[�(A, t) × {gjm

(t)}],�(A, t))

+ dH(Rjm+1 [�(A, t) × {gjm+1(t)}],�(A, t))

≤ t+ gjm−1(t) +
1

jm−1
+ gjm

(t) +
1

jm
+ gjm+1(t) +

1

jm+1

≤ t+
2

m− 1
+

1

m− 1
+

2

m
+

1

m
+

2

m+ 1
+

1

m+ 1

≤ t+
3

m− 1
+

6

m
≤ t+ 6t+ 6t

≤ 13t.

We conclude that Λ is as required. �

The next lemma that we need is similar to [7, Lemma 3.2]. The reader easily
verifies that the map defined there has the additional property (4) that we need in
the following lemma.

Lemma 4.2. Let Q =
∏∞

n=1 I
n and 0m = (0, . . . , 0) ∈ Im. There is a homotopy

W : 2Q × I → 2Q such that

(1) for t > 0, Wt : 2Q → 2Q is an embedding,

(2) if t ≤ 2−n, πm[W(A, t)] = {0m} for every A ∈ 2Q and m ≤ n,

(3) if t ≥ 2−n, πm[W(A, t)] = {πm(A)} × {0m−1} for every A ∈ 2Q and m ≥
n+ 3,

(4) Wt[C(Q)] ⊆ C(Q) for all t,

(5) for t > 0, Wt(A) is homeomorphic to A for every A ∈ 2Q.

Note that (2) and the continuity ofW imply that πi[W(A, 0)] = 0i for every A ∈ 2Q

and i ∈ N.
�

5. An Fσ-absorbing sequence in C(X).

The main result of this section is that if X is a countable product of non-
degenerate Peano continua and D a true dimension function, then the sequence
(D≥n(C(X)))∞n=2 is strongly Fσ-universal in C(X).

Proposition 5.1. For every n let Xn be a non-degenerate Peano continuum. Let
X =

∏∞
n=1Xn and D a true dimension function. Then the sequence

(
D≥n(C(X))

)∞
n=2 is strongly Fσ-universal in C(X).

Proof: Let ε > 0. Choose a decreasing sequence of σ-compact subsets (An)∞n=1
in Q and a map f : Q → C(X) that restricts to a Z-embedding on some compact
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subset K of Q. Without loss of generality we may assume that f is a Z-embedding
because C(X) is a Hilbert cube.

Choose c = (c1, c2, . . . ) ∈ X and maps Rn : (X × (0, . . . , 0))∪ ({cn}× In) → Xn

such that Rn(x, 0n) = x for all x and Rn | ({cn}×In) is an embedding. (We can do
this because we may assume that the space Xn contains an n-cube. This is where
we use that the spaces Xn are non-degenerate.)

For the space X and the point (c1, c2, . . . ), find a sequence i1 < i2 < i3 < · · · ∈ N

and homotopies Λ : C(X)×I → C(X) and � : C(X)×I → 2X with the properties
as stated in Lemma 4.1. Define δ : Q→ I by

δ(x) =
ε

16
d(f(x), f(K)).

Let ̺ : I → I be a map such that ̺−1(0) = 0 and ̺(2−n) = 2−in for all n ∈ N. Let
v : Q→ Q be a map such that

v(x1, x2, x3, . . . ) = ( x1
︸︷︷︸

, x1, x2
︸ ︷︷ ︸

, x1, x2, x3
︸ ︷︷ ︸

, x1, . . .
︸ ︷︷ ︸

, . . . ).

Observe that if for all, but finitely many, m we have πm(v(x)) = πm(v(y)), then
x = y.

By [9, Remark 5.15 and Proposition 5.10] it is possible to find an embedding
j : Q× I → C(Q) such that

(1) π1[j−1[D≥k+1(C(Q))]] = Ak,
(2) (0, 0, . . . ) ∈ j(x, t) for every x and t,
(3) π4k+1[j(x, t)] = [0, πk(v(x))],
(4) π4k+3[j(x, t)] = [0, t].

Let W : C(Q) × I → C(Q) as in Lemma 4.2.
The map that approximates f is given by

h(x) ={
∞∏

n=1

Rn(yn, wn) : (y1, y2, . . . ) ∈ �(f(x), δ(x)),

(w1, w2, . . . ) ∈ W(j(x, ̺(δ(x))), 2−5̺(δ(x)))}

∪ Λ(f(x), δ(x)).

We claim that this is the approximation of f as in the definition of strong Fσδ-
universality.

The proofs that h is well-defined, h | K = f | K and d̂(f, h) < ε are similar to
the proofs of corresponding results in [6, Theorem 3.4] and [7, Proposition 4.1].

We will prove that h is a Z-embedding and that h satisfies the desired embedding
property.

Claim 1. h is a Z- embedding.

First observe that h[K] ∩ h[Q \ K] = ∅. One easily verifies that for every
x ∈ Q \K we have dH(h(x), f(x)) < dH(f(x), h[K]). Since f | K = h | K
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and f | K is an embedding, it follows that h | K is an embedding. The
only thing left to prove therefore is that if x, y ∈ Q \ K and h(x) = h(y)
implies x = y. To this end, choose x, y ∈ Q\K such that h(x) = h(y) and let
̺(δ(x)) = t and ̺(δ(y)) = r. First we shall prove that in this situation r = t.
Observe that by the above t, r > 0. There consequently exists m ∈ N such
that 2−m ≤ min{2−5t, 2−5r}. Let Π : C(X) → C(

∏∞
n=m+3 Xn) denote the

projection. Then we have,

Π
[

�(f(x), r)
]

= {(cm+3, cm+4, . . . )} = Π
[

y�(f(y), t)
]

and

Π
[
Λ(f(x), r)

]
= {(cm+3, cm+4, . . . )} = Π

[
Λ(f(y), t)

]
.

Consequently,

Π
[
h(x)

]
= {

∞∏

n=m+3

{Rk(cn, wn)} : w ∈ W(j(x, r), 2−5r)}

and

Π
[
h(y)

]
= {

∞∏

n=m+3

{Rn(cn, wn)} : w ∈ W(j(y, t), 2−5t)}.

Choose k ≥ m+ 3 such that k has the form 4p+ 3. Then

Rk

[
{ck} × ([0, t] × {0}k−1)

]
= πk[h(x)]

= πk[h(y)]

= Rk

[
{ck} × ([0, r] × {0}k−1)

]
.

Because Rk | {ck} × Ik is an embedding, we find t = r. To see that x = y,
note that for any k ≥ m+ 3 that is of the form k = 4p+ 1 we have

Rk

[
{ck} × ([0, πp(v(x))] × {0}k−1)

]
= πk[h(x)]

= πk[h(y)]

= Rk

[
{ck} × ([0, πp(v(y))] × {0}k−1)

]
.

Using again that Rk | {ck}× I
k is an embedding we find that for any p with

4p+ 1 ≥ m+ 3 we have

πp(v(x)) = πp(v(y)).

Because of the way we constructed the coordinate shifting map v this implies
that x = y.

Since for all x ∈ Q\K there is an N ∈ N such that for all n ≥ N , πn[h(x)] 6= Xn

and h[K] ∈ Z(Q), h is a Z-embedding.
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Claim 2. For all k ∈ N, h−1
[
D≥k+1(C(X))

]
\K = Ak \K.

Note that for x ∈ Q \ K we have that h(x) is the union of an at most
one-dimensional set Λ(f(x), δ(x)) and a finite union of copies of

W
(

j(x, ̺(δ(x))), 2−5̺(δ(x))
)

.

For x ∈ Q \K we have

D
[

W
(

j(x, ̺(δ(x))), 2−5̺(δ(x))
)]

= D[j(x, ̺(δ(x)))].

As a consequence, for x ∈ Q \K:

D[h(x)] = max{1,D[j(x, ̺(δ(x)))]}.

By the construction of the map j we have for all k ∈ N,

h−1[D≥k+1(C(X))] \K = j−1[D≥k+1(C(Q))] \K = Ak \K.

�

Theorem 5.2. If X is a countable infinite product of non-degenerate Peano con-
tinua and D a true dimension function, then the sequence

(
D≥n(C(X))

)∞
n=2 is

Fσ-absorbing in C(X).

Proof: The sequence
(
D≥n(C(X))

)
is strongly Fσ-universal in C(X) by Proposi-

tion 5.1. By Theorem 3.7 we have that for every n ≥ 2, D≥n(C(X)) is a σZ-subset
of C(X). �

Corollary 5.3. Let X be a countable product of non-degenerated Peano continua
and D a true dimension function. Then there is a homeomorphism f : C(X) → Q∞

such that for all n ∈ N,

f [D≥n+1(C(X))] = B × . . . B
︸ ︷︷ ︸

n times

×Q×Q× . . . .

Proof: Since as was observed in § 2 the sequence (Bn × Q × Q × . . . )∞n=1 is Fσ-
absorbing in Q∞, this follows from Theorem 5.2 and Theorem 2.1.

�

Corollary 5.4. Let X be a countable infinite product of Peano continua. Then
D≥n(C(X)) is a capset in C(X) for every n ≥ 2.

Proof: By Corollary 5.3, for every n ≥ 2 the pair
(
C(X),D≥n(C(X))

)
is homeo-

morphic to the pair (Q∞, Bn−1 ×Q×Q× . . . ). Bn−1 ×Q×Q× . . . is a capset in
Q∞, thus D≥n(C(X)) is a capset in C(X). �
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Remark. Note that the results in this section hold in particular for the covering
dimension dim and the cohomological dimension dimG for any Abelian group G.

Remark. The techniques used in this paper combined with the result in [7], can
be used to prove that for X a countable infinite product of non- degenerate Peano
continua and D an arbitrarily true dimension function, the sequence (D≥n(2X))∞n=1

is Fσ-absorbing in 2X .
It is easy to see that for every n the set D≥n(2X) is a σZ-set in 2X .
To prove the strong Fσ-universality of the sequence, repeat the proof that the

sequence (dim≥n(2X))∞n=1 is strongly Fσ-universal in [7]. Use in that proof a map

̃ : Q× I → 2Q, that can be found in the same way as the map j : Q× I → C(Q)
that we used in the proof of Proposition 5.1 in this paper.
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