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Large cardinals and Dowker products

Chris Good

Abstract. We prove that if there is a model of set-theory which contains no first count-
able, locally compact, scattered, countably paracompact space X, whose Tychonoff
square is a Dowker space, then there is an inner model which contains a measurable
cardinal.

Keywords: small Dowker space, Dowker product, normality, countable paracompactness,
measurable cardinal, Covering Lemma

Classification: 03E35, 03E55, 54D15, 54D20, 54G15

In this paper we always take space to mean Hausdorff topological space.
A space is normal if every pair of disjoint closed sets can be separated by disjoint
open sets, and binormal if its product with the closed unit interval is normal.
A space is countably paracompact (metacompact) if every countable open cover
has a locally (point) finite open refinement. In [Dk], Dowker shows that a normal
space is binormal iff it is countably paracompact iff it is countably metacom-
pact. A Dowker space is a normal space that is not countably paracompact. For
a survey of Dowker spaces we refer the reader to [R].
Rudin and Starbird [RS] have shown that for normal, countably paracompact

X and metrizableM , X×M is normal if and only if it is countably paracompact.
They asked whether a product of two normal, countably paracompact spaces could
be a Dowker space. Bešlagić constructs various positive answers to this question,
assuming ♦ or CH , in [B1], [B2] & [B3].
In [G] we prove that if there is a model of set theory which contains no first

countable, locally compact, scattered Dowker spaces, then there is a model of
set-theory which contains a measurable cardinal. Here we extend this result by
proving that large cardinals are needed for a model in which there is no first
countable, locally compact, countably paracompact space X with first countable,
locally compact, scattered Dowker square:

1. Theorem. If no inner model of set theory contains a measurable cardinal,

then there is a first countable, locally countable, locally compact, strongly zero-

dimensional, collectionwise normal, countably paracompact, scattered space whose

Tychonoff square is a first countable, locally compact, collectionwise normal, scat-

tered Dowker space.

Notation and terminology are standard—see [E], [K] or [KV]. We regard car-
dinals as initial ordinals, and an ordinal as the set of its predecessors. We use



516 C.Good

the term club set or club to denote a closed, unbounded subset of an ordinal—it
will be clear from the context which particular ordinal we mean. For a function
f : A → B, we denote by f“C the set {f(x) : x ∈ C ⊆ A}. For a subset A of α×β,
we denote the set {γ : (∃δ)(γ, δ) ∈ A} by domA, and the set {δ : (∃γ)(γ, δ) ∈ A}
by ranA. Following [B1], a subset A of κ+ × κ+ is said to be 2-unbounded if
A is not a subset of (κ+ × α) ∪ (α × κ+) for any α ∈ κ+. As usual we use the
following characterization from [Dk]: a space is countably metacompact if and
only if, for every decreasing sequence {Dn}n∈ω of closed subsets of X , which has
empty intersection, there is a sequence {Un}n∈ω of open sets, Un containing Dn

for each n, which also has empty intersection.
A stationary subset E of some uncountable cardinal λ is said to be non-

reflecting if, for every α < λ, α∩E is non-stationary in α. If E is a non-reflecting
stationary subset of κ+ and α ∈ κ+, then it is easy to see that there is a club
set H = {γλ : λ ∈ θ ≤ α} of α such that H and E are disjoint, and (γλ, γλ+1)
is countable for all λ ∈ θ. In what follows we shall let E denote a non-reflecting,
stationary subset of κ+, each member of which has countable cofinality.

2. Definition. ♣κ+(E, 2) is the assertion that there is a collection {Rα,i : Rα,i ⊆
α, α ∈ E ∩ lim and i ∈ 2} such that each Rα,i is an ω-sequence, cofinal in α,
and {α ∈ E : Rα,i ⊆ Xi for both i ∈ 2} is stationary whenever X0 and X1 are

unbounded subsets of κ+. �

In [G] we deduce, via [Dv], [DJ] and [F],

3. Lemma. If no inner model of set-theory contains a measurable cardinal, then

♣κ+(E, 2) for some κ+. �

In the construction of the space X , we use the following two consequences of
♣κ+(E, 2).

4. Definition. ♣κ+×κ+(E, 2) is the assertion that there is a sequence {Sα,i :
Sα,i ⊆ α × α, α ∈ E ∩ lim and i ∈ 2} such that Sα,i is an ω-sequence, cofinal
in α × α, and {α ∈ E : Sα,i ⊆ Xi i ∈ 2} is stationary whenever X0 and X1 are

2-unbounded subsets of κ+ × κ+. �

5. Definition. ♣∩

κ+
(E, 2) is the assertion that there is a sequence {Tα,i,n :

Tα,i,n ⊆ α, α ∈ E ∩ lim, and i ∈ 2} such that
⋃

n∈ω Tα,i,n and each Tα,i,n is
an ω-sequence, cofinal in α, Tα,i,n ∩ Tα,j,m is empty whenever i 6= j or m 6= n,
and

⋂

n∈ω{α ∈ E : Tα,i,n ⊆ Xi,n, for both i ∈ 2} is stationary whenever

{Xi,n : i ∈ 2, n ∈ ω} is a collection of unbounded subsets of κ+. �

6. Lemma. If ♣κ+(E, 2), then ♣κ+×κ+(E, 2) and ♣∩

κ+
(E, 2).

Proof: Let {Rα,i : α ∈ E∩lim, i ∈ 2} be a ♣κ+(E, 2)-sequence. We may assume

that Rα,0 and Rα,1 are disjoint for all α in E ∩ lim. Let f : κ+ → κ+ × κ+ and

g : κ+ → κ+ × ω be any bijections. F = {α : f“α = α × α} and G = {α : g“α =
α × ω} are both club in κ+.



Large cardinals and Dowker products 517

For α in E ∩ F ∩ lim such that both f“Rα,0 and f“Rα,1 are cofinal in α × α,
define Sα,i to be the set f“Rα,i. Otherwise, for α in E, let Sα,i be an arbitrary
sequence cofinal in α× α. It is easy to see that {Sα,i : Sα,i ⊆ α× α, α ∈ E ∩ lim
and i ∈ 2} is a ♣κ+×κ+(E, 2)-sequence.
If α is in E ∩G∩ lim, i ∈ 2 and n ∈ ω, let Tα,i,n be the set dom(g“Bα,i ∩ (α×

{n})). Otherwise, for α in E, let Tα,i,n be arbitrary.

To see that {Tα,i,n : Tα,i,n ⊆ α, α ∈ E ∩ lim, and i ∈ 2} is a ♣∩

κ+
(E, 2)-

sequence, let {Xi,n}i∈2
n∈ω
be a collection of unbounded subsets of κ+, and let Xi =

⋃

n∈ω Xi,n × {n}. S = {α ∈ E : Rα,i ⊆ g−1“Xi, i ∈ 2} is stationary. If α is in
S, then g“Rα,i is a subset of Xi and hence S is a subset of

⋂

{α ∈ E : Tα,i,n ⊆
Xi,n, i ∈ 2}. �

Our construction is similar to that used by Bešlagić in [B1]. We define three
normal topologies, Ti, i ∈ 3, on the point set Y = κ+ × ω. The topologies
T0 and T1 both refine T2, which is a Hausdorff topology, hence the diagonal ∆ of
(Y, T0)×(Y, T1) is a closed subspace of X

2. Our spaceX is the disjoint topological
sum of (Y, T0) and (Y, T1). ♣κ+×κ+(E, 2) helps to ensure that the product X2

is normal, and that ∆ is a Dowker space. Since ∆ is closed in X2, X2 is also
a Dowker space. We use ♣∩

κ+
(E, 2) to ensure that (Y, Ti), i ∈ 2 is countably

paracompact (cf § 5 [B1]).
7. Example. ♣κ+(E, 2) There is a first countable, locally countable, locally com-
pact, strongly zero-dimensional, collectionwise normal, countably paracompact,

scattered space X , whose Tychonoff square is a first countable locally compact,
collectionwise normal, scattered Dowker space.

Proof: Let Y be the point set κ+ × ω, let π : Y → κ+ be the natural

projection, π((α, n)) = α, and let Π : Y 2 → κ+
2
be the natural projection,

Π((α, n), (β, m)) = (α, β). Let {Sα,i : Sα,i ⊆ α × α, α ∈ E ∩ lim and i ∈ 2}
and {Tα,i,n : Tα,i,n ⊆ α, α ∈ E ∩ lim, n ∈ ω and i ∈ 2} be ♣κ+×κ+(E, 2)- and

♣∩

κ+
(E, 2)-sequences respectively. Bearing in mind the proof of Lemma 6, it is not

hard to see that we may assume that
⋃

i∈2(ranSα,i ∪ domSα,i) and
⋃

i∈2
n∈ω

Tα,i,n

are disjoint for each α in E ∩lim. We may also assume that each ω-sequence Sα,i

is strictly increasing in both coordinates.
For each α in E ∩ lim and each i ∈ 2, partition Sα,i into ω disjoint sequences

Sα,i,n, where n ∈ ω, each cofinal in α × α. Let B(α, i, n) be the sequence
domSα,i,n ∪ ranSα,i,n. For each n ∈ ω, B(α, i, n) is an ω-sequence, cofinal
in α, and the collection {B(α, i, n) : α ∈ E ∩ lim, i ∈ 2} is a ♣κ+(E, 2)-
sequence. Since Sα,i is strictly increasing in both coordinates, B(α, i, n) and
B(α, i, m) are disjoint whenever n 6= m. Let B(α, n) = B(α, 0, n) ∪ B(α, 1, n)
and let B(α) =

⋃

n∈ω B(α, n). Enumerate the ω-sequence B(α) increasingly as
{β(α, j) : j ∈ ω}.
For i ∈ 2 let C(α, i, n) = Tα,i,n and let C(α, 2, n) = C(α, 0, n) ∪ C(α, 1, n).

Let C(α) =
⋃

n∈ω C(α, 2, n). Enumerate the ω-sequence C(α) increasingly as
{γ(α, j) : j ∈ ω}.
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By assumption B(α) and C(α) are disjoint for all α in E ∩ lim. Let A(α) =
B(α) ∪ C(α) and index A(α) increasingly as {α(k) : k ∈ ω}.
We define the topologies Ti by induction on the lexicographical order on κ+×ω.

At each stage of the induction (α, n), and for each i ∈ 3, we define a topology Ti,α

on Yα = α × ω and then a neighbourhood base Ni(α, n) = {Ni((α, n), k)}k∈ω at
the point (α, n). Our inductive hypotheses are, for γ < β < α and i ∈ 3:

(1) Ti,β is a Hausdorff, conservative extension of Ti,γ , and Yγ+1 is a Ti,β-clopen
subset of Yβ ;

(2) Ni(γ, k) is a decreasing neighbourhood base of sets which are clopen, com-
pact and countable under Ti,β , and are subsets of Yγ+1;

(3) Ni((β, n), k) and Ni((β, m), k) are disjoint whenever n 6= m;
(4) N0((β, n), k) ∪ N1((β, n), k) is a subset of N2((β, n), k) for all k ∈ ω;
(5) if δ(n, k) = inf{π“Ni((α, n), k)}, then, for all n ∈ ω, the sequence

{δ(n, k) : k ∈ ω} is cofinal in α;
(6) for all 0 < r ∈ ω, the point (γ, 0) is a T0,β-limit of each sequence

C(γ, 0, r)×{r}, a T1,β -limit of each sequence C(γ, 1, r)×{r}, and a T2,β -
limit of both sequences;

(7) if N0 ∈ N0(β, 0) and N1 ∈ N1(β, 0), then N0 ∩ N1 = {(β, 0)};
(8) for all 0 ≤ p ≤ m, the point (β, m + 1) is a Ti-limit of the sequence

B(α, m) × {p}.

If α = 0, let Ti,0 = ∅ and let Ni(0, n) = {{(0, n)}} for each i ∈ 3. Suppose
that we have defined Ni(β, k) for each i ∈ 3, all β ∈ α and all k ∈ ω. Define Ti,α

to be the topology generated by
⋃

{Ni(β, k) : k ∈ ω, β < α}.
If α = β + 1 for some β, or α is not in E, then we declare the point (α, n) to

be isolated and define Ni(α, n) to be {{(α, n)}} for each i ∈ 3.
Now suppose that α is a limit ordinal in E.
First let us suppose that n = 0. The sequence C(α) is enumerated as {γ(α, j) :

j ∈ ω}. Each γ(α, j) in C(α) occurs uniquely in Tα,ij ,rj
for some ij ∈ 2 and

some rj ∈ ω, and is indexed as α(kj) in A(α). By inductive hypotheses (4)
and (5), whenever rj > 0, we can choose a basic open set N2(γ(α, j), rj) from
N2(γ(α, j), rj) such that

(†) π“N2(γ(α, j), rj) is a subset of the interval (α(kj − 1), α(kj)] in κ+

(by (5)).

For i ∈ 3, and each k ∈ ω, define

Ni((α, 0), k) = {(α, 0)}∪
⋃

{N2(γ(α, j), rj) : γ(α, j) ∈ C(α, i, rj), rj > 0, j > k}.

Now suppose that n = m+1 for somem ∈ ω. The sequence B(α) is enumerated
as {β(α, j) : j ∈ ω}, and each β(α, j) occurs uniquely in some B(α, rj), and is
indexed in A(α) as α(kj). By (4), (5) and the fact that T2,α is Hausdorff, for each
β(α, rj) such that rj = m and for each p ≤ rj , we can choose disjoint basic open
neighbourhoods Ni(β(α, j), p) from Ni(β(α, j), p), i ∈ 3 of the point (β(α, j), p)
such that Ni(β(α, j), p) is a subset of N2(β(α, j), p), for each i ∈ 2, and

(‡) π“Ni(β(α, j), p) is a subset of the interval (α(kj − 1), α(kj)] in κ+.
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For i ∈ 3, and each k ∈ ω, define

Ni((α, n), k) =

= {(α, n)} ∪
⋃

{Ni(β(α, j), p) : β(α, j) ∈ B(α, m), p ≤ m, and j > k}.

It is not hard to check that the inductive hypotheses hold.
Let Ti be the topology generated by

⋃

(α,n)∈Y Ni(α, n).

Clearly both T0 and T1 refine T2, and it is not hard to check that each (Y, Ti)
is Hausdorff. Moreover, in each of these topologies, a point (α, n) of Y is either
isolated or has a neighbourhood homeomorphic to the ordinal space ωm + 1, for
some m ≤ n. Therefore, for each i ∈ 3, (Y, Ti) is regular, first countable, locally
countable, locally compact, zero-dimensional and locally metrizable.

Claim 1. For each i ∈ 3 and all α ∈ κ+, the subspace Yα = α × ω of (Y, Ti) is
metrizable.

Proof of Claim 1: Fix i ∈ 3. The proof is by induction, so assume that Yβ is
metrizable for all β ∈ α.
Since E is a non-reflecting stationary set, each of whose elements has countable

cofinality, if α is a limit ordinal (either in E or not), or α ≤ ω1, then there is
a sequence {αγ : γ ∈ θ ≤ α}, which is both closed, cofinal in α, and disjoint
from E. But then

{(αγ , αγ+1)× ω : γ ∈ θ} ∪
⋃

{{αγ} × ω : γ ∈ θ}

partitions Yα into disjoint, clopen, metrizable subsets.
Now suppose that α = β + 1. Without loss of generality, we may assume

that β is a limit ordinal. If β is not in E, then the two sets Yβ and {(β, n) :
n ∈ ω} partition Yα into disjoint, clopen, metrizable sets, and we are done.
Assume that β is an element of E. By construction, {Nj}j∈ω, where Nj =
Ni((β, j), 1) ∈ Ni(β, j), forms a disjoint collection of clopen, metrizable subsets
of Yα. Furthermore, by † and ‡, if xj is any point of Nj , then the set {π(xj)}j∈ω

forms an ω-sequence, cofinal in β (though not necessarily indexed in increasing
order), so the only possible limit point of the sequence {xj}j∈ω is (β, k) for some k
in ω, which is impossible. Therefore {Nj}j∈ω is a discrete collection of countable,
clopen sets. But now N =

⋃

j∈ω Nj and Z = Yα − N partition Yα into disjoint,

clopen, metrizable subspaces, and again Yα is metrizable. �

Claim 2. Fix i ∈ 3. If H is a subset of (Y, Ti) of size κ+, then H has a limit
point, and, if C and D are closed subsets of (Y, Ti), both of size κ+, then C and
D are not disjoint.

Proof of Claim 2: For any subset A of Y let A(n) = A ∩ (κ+ × {n}).
Suppose that H has size κ+, then H(n) also has size κ+ for some n ∈ ω. By

♣κ+×κ+(E, 2), B(α, n) × {n} is contained in H(n), for some α in E, so H has
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(α, n+1) as a limit point in κ+×{n+1}. In fact, since κ+ is a regular cardinal,
H has κ+ limit points in κ+ × {n+ 1}.
Now let C and D be closed subsets of (Y, Ti) of cardinality κ+. From the

previous paragraph it is clear that |C(n)| = |D(n)| = κ+, for some n. By
♣κ+×κ+(E, 2), there is an α in E for which both B(α, 0, n) × {n} is a subset
of C(n), and B(α, 1, n) × {n} is a subset of D(n), so C and D have a common
limit point. �

For each i ∈ 3, the (strong) collectionwise normality of (Y, Ti) is immediate
from Claims 1 and 2: Let D be a discrete collection of closed sets. By Claim 2,
D has size less than κ+ and there is some successor α such that Yα contains all
but at most one of the sets in D. Since Yα is clopen and metrizable we are done.
The strong zero-dimensionality of (Y, Ti) also follows from Claims 1 and 2:

Suppose that A and B are subsets of Y which are completely separated by the
function f : (Y, Ti) → [0, 1] in that f“A = {0} and f“B = {1}. The sets
f−1“[0, 1/4] and f−1“[3/4, 1] are disjoint, closed sets containing A and B respec-
tively, so, as above, there is a successor α such that Yα contains A, say. Yα is
a metrizable, locally compact, zero-dimensional subspace of Y and is, therefore,
strongly zero-dimensional (by 6.2.10 [E]).

Claim 3. (Y, Ti) is countably paracompact for each i ∈ 3.

Proof of Claim 3: Fix i ∈ 3. Since (Y, Ti) is normal it suffices to show that,
for every decreasing sequence of closed subsets {Dn}n∈ω of (Y, Ti) with empty
intersection, there is a sequence of open subsets {Un}n∈ω with empty intersection
such that Un contains Dn.
Let {Dn}n∈ω be such a sequence of closed sets. Suppose that each Dn has

size κ+, then, with the notation used above, Claim 2 implies that Dn(k) has size
κ+ for all k greater than some kn ∈ ω. By relabelling and adding repetitions
if necessary, we may assume that Dn(n) has size κ+ for all n larger than some
n0 > 0. Now, by ♣∩

κ+
(E, 2),

S =
⋂

n∈ω

{α ∈ E : Tα,i,n ⊆ Dn(n), i ∈ 2}

is a stationary set, and therefore non-empty. By the construction of the topology
Ti, if α is in S, then (α, 0) is in Dn for all n ∈ ω, and so

⋂

Dn is not empty—
a contradiction.
Pick n0 such that |Dn| ≤ κ for all n ≥ n0. By Claim 1 there is a successor α

such that Dn is a subset of Yα for n ≥ n0. The claim follows since Yα is clopen
and metrizable. We are done. �

Claim 4. For i, j ∈ 2, (Y, Ti)× (Y, Tj) is normal.

Proof of Claim 4: Let C and D be disjoint closed subsets of (Y, Ti)× (Y, Tj),

and recall that Π : (κ+ × ω)2 → κ+ × κ+ is the natural projection.
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Suppose that both Π“C and Π“D are 2-unbounded in κ+ × κ+. There are
integers m, n, j, k ∈ ω such that Cn,k = {(γ, δ) : ((γ, n), (δ, k)) ∈ C} and Dm,j =
{(γ, δ) : ((γ, m), (δ, j)) ∈ D} are both 2-unbounded. Let s = n +m + j + k + 1,
so that s is strictly greater than n, m, j and k. By ♣κ+×κ+(E, 2), there is some
α in E such that Sα,0 is a subset of Cn,k and Sα,1 is a subset of Dm,j . By the
definition of the sequence B(α, 0, s)

Cn,k ∩ (Bα,0,s × B(α, 0, s))

is infinite and cofinal in (α, α). By the definition of the topologies Ti and Tj ,

C ∩
(

(B(α, 0, s) × {n})× (Bα,0,s × {k})
)

is cofinal in ((α, s), (α, s)), which is therefore a limit point of C. Similarly
((α, s), (α, s)) is a limit point of D, and C and D are not disjoint.
So suppose that Π“C is not 2-unbounded. Choose γ not in E such that C is

a subset of

K = ((γ × ω)× (κ+ × ω)) ∪ ((κ+ × ω)× (γ × ω)).

Since γ is not in E, K is a clopen subset of (Y, Ti) × (Y, Tj). Since E is a non-
reflecting stationary set, there is a club setH of γ, enumerated as {γλ : λ ∈ θ ≤ γ},
which misses E and such that Gλ = {α : γλ < α < γλ+1} is countable. Now
{{γλ} × ω}λ∈θ ∪{Gλ × ω}λ∈θ partitions Yγ into countable, metrizable, Ti-clopen
subsets of Y , for i = 0 or 1. Lemma 2.8 of [B1] states that, for normal, countably
paracompact space X and a countable metric space M , X × M is normal. It is
easy to see, then, that K is normal. Since K is clopen, (Y, Ti) × (Y, Tj) is now,
itself, seen to be normal—proving the claim. �

The proof that (Y, Ti)× (Y, Tj) is collectionwise normal is similar.
Now, let X be the disjoint topological sum of (Y, T0) and (Y, T1). From the

above, it is clear that X satisfies the properties listed in the statement of the
Theorem 1, except that it remains to show that X2 is not countably paracompact:

Claim 5. The closed subspace ∆ = {((α, n), (α, n)) : α ∈ κ+, n ∈ ω} of (Y, T0)×
(Y, T1) is not countably metacompact.

Proof of Claim 5: Let Dn = {((α, j), (α, j)) : α ∈ κ+, j ≥ n}, and let Un

be any open subset of ∆ containing Dn. {Dn}n∈ω is a decreasing sequence of
closed subsets of ∆ with empty intersection, so it is enough to show that

⋂

Un is
non-empty.
Notice that, since the sequences C(α, 0) and C(α, 1) are disjoint, the point

((α, 0), (α, 0)) is isolated for each α ∈ κ+ (by hypothesis (7)). However, if α
is a limit in E, then (α, n + 1) is both a T0- and a T1-limit of the sequence
B(α, n) × {n}. So, as {B(α, i, n)}i∈2

α∈E∩lim
is a ♣κ+(E, 2)-sequence, the proof of

Claim 2 is, almost verbatim, a proof of:

* If H is a subset of ∆ of size κ+, then H has a limit point in ∆, and, if
C and D are closed subsets of ∆, both of size κ+, then C and D are not
disjoint.
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Dn and ∆ − Un are disjoint closed subsets. Dn has cardinality κ+, so, by *,
|∆ − Un| ≤ κ. Hence |

⋂

n∈ω Un)| = κ+ and in particular ∆ is not countably
metacompact. This completes the proof of the Theorem. �
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