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On uniformly smoothing stochastic operators

Wojciech Bartoszek

Abstract. We show that a stochastic operator acting on the Banach lattice L1(m) of
all m-integrable functions on (X, A) is quasi-compact if and only if it is uniformly
smoothing (see the definition below).
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Let (X,A, m) be a σ-finite measure space. By D we denote the set of all
densities from L1(m), i.e. m integrable positive functions f such that

∫
X

fdm = 1.

A linear operator P : L1(m)→ L1(m) is said to be stochastic if P (D) ⊆ D.
Stochastic operators have broad applications. The reader may find appropri-

ate references in [LM]. Among other properties, usually the asymptotic behaviour
of the iterates Pn is studied. In the middle of the eighties Komornik and La-
sota introduced to the theory of stochastic operators the concept of smoothness.
Namely, P is said to be smoothing if

there exist a set F ∈ A of finite measure and

constants 0 < η < 1 , 0 < δ such that for any f ∈ D

and E ∈ A with m(E) ≤ δ we have

(S)

lim
n→∞

∫

E ∪F c

Pnfdm ≤ η ,

where F c stands here and in the sequel for the complementation X \ F .
Smoothing stochastic operators have nice asymptotic properties. It is proved in

[KL] that any smoothing stochastic operator P is asymptotically periodic i.e. there
exist pairwise orthogonal densities g1, . . . , gr, positive functionals Λ1, . . . ,Λr and

a permutation α of the set {1, . . . , r} such that lim
n→∞

‖Pnf−
r∑

i=1
Λi(f)gαn(i) ‖ = 0

and Pgi = gα(i) i = 1, 2, . . . , r. In particular, for some constant d the sequence

Pnd converges in the strong operator topology to
r∑

i=1
Λi ⊗ gi. The most gen-

eral result in this direction was finally obtained by Komornik. Namely, it was
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proved in [K] that any power bounded positive, and linear operator on L1(m) is
asymptotically periodic.
In this note we discuss the uniform version of (S). Following [B3] (see Problem 3,

page 57) we adapt here:

Definition. Let 0 < η < 1. A stochastic operator P is said to be uniformly
η-smoothing if there are F ∈ A with m(F ) < ∞, and a constant 0 < δ such that
for some natural n0

(US–η) sup
f∈D

∫

E ∪F c

Pn0 f dm ≤ η

for all E ∈ A satisfying m(E) ≤ δ.

We will show that operators satisfying (US–η), are quasi-compact. Let us
recall that an operator P is quasi-compact if ‖Pn − K ‖ < 1 for some compact
operator K and natural n. It is known (see for instance [B2]) that quasi-compact

stochastic operators P are exactly those which satisfy ‖Pnd−
r∑

i=1
Λi⊗gi ‖−−−−→

n→∞
0,

for suitable d, r, Λi, and gi. We will exploit here the characterization of quasi-
compact operators obtained in [B1]. In particular we shall apply some of the
results from the mentioned paper to Markov operators acting on the Banach
lattice C(∆) of all continuous functions on ∆, where ∆ stands for the set of
all linear and multiplicative functionals on L∞(m) equipped with the *-weak
topology, so Hausdorff and compact. We recall that a linear operator T : C(∆)→
C(∆) is Markov if T1 = 1 and Tf ≥ 0 for f ≥ 0. The dual space to C(∆)
is identified with Radon, finite (signed) measures on ∆. The *-weak compact
(nonempty) set of all probability measures µ on ∆ such that T ∗µ = µ is denoted
by PT (∆). Clearly the adjoint to P operator T = P ∗ is markovian.
A linear operator R acting on a Banach space X is said to be strongly ergodic

if for all x ∈ X the Cesaro means n−1(I +R+ · · ·+Rn−1)x are convergent in the
norm of X . Sine’s mean ergodic theorem (see [S]) provides necessary and sufficient
conditions for strong ergodicity. Namely, it holds if and only if R-invariant vectors
separate R∗-invariant ones. It is easy to verify that R∗-invariant vectors always
separate R-invariant ones. In [B1] it is proved that a Markov operator T on C(∆)
is quasi-compact if T ∗ is strongly ergodic and the topological support S(µ) of any
µ from PT (∆) is non-meager. Finally we notice that the quasi-compactness of P
is equivalent to the quasi-compactness of its adjoint P ∗.

Theorem. Let P be a stochastic operator on L1(m). Then P is quasi-compact

if and only if P is η-uniformly smoothing for some (for all) 0 < η < 1.

Proof: Assume that P is η-uniformly smoothing with F , n0, η, δ as in (US–η),

and let X =
∞⋃

j=1
Xj where Xj are pairwise disjoint with positive finite measure.



On uniform smoothing 205

We assume that X1 = F . Now let us define a probability measure

m0 =

∞∑

j=1

tjm|Xj
where

∞∑

j=1

tjm(Xj) = 1 , and tj > 0.

Clearly m0 and m are equivalent, so L∞(m0) = L∞(m). The measure m0 may
be transported on ∆ by the Gelfand transform ̂. Then, for any f ∈ L∞ we have

∫

X

fdm0 =

∫

∆

f̂dm̂0

where f̂ ∈ C(∆) is the image of f by ̂. By ˜ let us denote the inverse operation
to ̂.
First we show that measures from PT (∆) are absolutely continuous with respect

to m̂0. Since T ∗L1(m̂0) ⊆ L1(m̂0), it is sufficient to show that any ν̂ ∈ PT (∆)
has a nonzero absolutely continuous with respect to m̂0 component. If not, let us
suppose that for some ν̂ ∈ PT (∆) one has ν̂ ⊥ m̂0. Then there exists a clopen set

Û ⊆ ∆ so that

(⋆) m̂0(Û) < t1δ with ν̂(Û) = 1.

Let f̂ ∈ C(∆) be such that
∫

f̂dm̂0 = 1 and T ∗n0(f̂m0)(Û) >
1

2
+

η

2
. We get

∫
U

Pn0 d( f̂ m0 )e
dm dm >

1

2
+

η

2
> η. This implies m(U ∩F ) > δ, so m0(U ∩F ) >

t1δ, and finally contradicting (⋆) we get m̂0(Û) ≥ m̂0(Û∩F̂ ) > t1δ. Therefore
PT (∆) ⊆ L1(m̂0), which easily implies that the topological support of ν ∈ PT (∆)
is non-meager.
Applying Sine’s mean ergodic from [S] we notice that the operator T is strongly

ergodic. In particular, A∗
nν = n−1(I∗+T ∗+ · · ·+T ∗(n−1))ν is *-weak convergent.

Since ∆ has the Grothendieck property (*-weak convergent sequences from C(∆)∗

are weakly convergent) thus A∗
nν is weakly convergent. But weakly convergent

Cesaro means are norm convergent. Therefore, T ∗ is strongly ergodic. Using
results of [B1] we easily obtain quasi-compactness of T = P ∗. By Theorem 2

from [B2], there is a natural d such that P ∗nd is convergent in the operator norm
to a finite dimensional projection. This is equivalent to the norm convergence of
Pnd, and P is quasi-compact.
To prove the opposite let us assume that a stochastic operator P is quasi-

compact. For some d we have lim
n→∞

Pnd =
r∑

i=1
Λi ⊗ gi, where gi ∈ D are pairwise

orthogonal (i.e. gi · gj = 0 m a.e. for i 6= j) and Λi(f) =
∫

f hi dm where
‖ hi ‖∞ ≤ 1. For a given 0 < η < 1 we choose a set F ∈ A of finite measure
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and positive δ that if m(E) < δ then
∫

E ∪F c

r∑
j=1

gjdm <
η

2
. If n is such that

‖Pnd −
r∑

j=1
Λj ⊗ gj ‖ <

η

2
, then we have

∫

E ∪F c

Pndf dm =

∫

E ∪F c


Pnf −

r∑

j=1

λj(f)gj


 dm+

r∑

j=1

λj(f)

∫

E ∪F c

gj dm

≤
η

2
+

∫

E ∪F c

r∑

j=1

gj dm ≤ η

where f is an arbitrary density. �
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