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Weil uniformities for frames

Jorge Picado*

Abstract. In pointfree topology, the notion of uniformity in the form of a system of
covers was introduced by J. Isbell in [11], and later developed by A. Pultr in [14] and [15].
Another equivalent notion of locale uniformity was given by P. Fletcher and W. Hunsaker
in [6], which they called “entourage uniformity”.
The purpose of this paper is to formulate and investigate an alternative definition

of entourage uniformity which is more likely to the Weil pointed entourage uniformity,
since it is expressed in terms of products of locales. We show that our definition is
equivalent to the previous ones by proving that our category of Weil uniform frames is
isomorphic to the one defined in [6].

Keywords: uniform space, frame, uniform frame, uniform frame homomorphism, C-
ideal, frame coproduct, entourage, Weil uniform frame, Weil homomorphism

Classification: 06D20, 54E15, 54E55

0. Introduction

Uniformities on a set X were introduced, in the thirties, by A. Weil [17] in
terms of subsets of X×X containing the diagonal ∆X = {(x, x) : x ∈ X}, called
“entourages” or “surroundings” (the classical account of this subject is in Chapter
II of Bourbaki [4]):

Definition 0.1 (Weil [17]). A uniformity on a set X is a subset E of P(X ×X)
such that:

(i) E is a filter with respect to ⊆.
(ii) Every element of E contains the set ∆X = {(x, x) | x ∈ X}.
(iii) If E ∈ E then there is a D ∈ E such that

D ◦D := {(x, y) ∈ X ×X | there is a z ∈ X such that (x, z) and (z, y) ∈ D}

is contained in E.
(iv) If E ∈ E then the set E−1 := {(x, y) ∈ X ×X | (y, x) ∈ E} is also in E .

The members of the filter E are called entourages. A uniform space is a set X
together with a uniformity on X .
A map h : X −→ Y , where X and Y are uniform spaces, is uniformly continu-

ous if (h× h)−1(E) is an entourage of X whenever E is an entourage of Y .

*The author acknowledges financial support by Centro de Matemática da Universidade de
Coimbra.
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Let E be a uniformity on X . For each A ⊆ X and each E ∈ E , let E[A] =
⋃

x∈AE[x], where E[x] = {y ∈ X | (x, y) ∈ E}. For A,B ⊆ X , we write A
E
⊳B if

E[A] ⊆ B for some E ∈ E . The following result is well known:
Proposition 0.2. Let (X, E) be a uniform space and let TE be the associated

topology on X . Then, for every U ∈ TE , U =
⋃

{V ∈ TE | V
E
⊳U}. �

It was the approach to uniform spaces via covers of J.W. Tukey [16] that was
first studied in the pointless context of locales: in [11] J. Isbell introduced a theory
of locale (frame) uniformities in terms of covers (a cover of a locale L is a subset
C of L such that

∨

C = 1), later developed in detail by A. Pultr ([14], [15]). In
[11] the author also suggested a theory of locale uniformities by entourages but,
intentionally, put it aside: “Entourages ought to work, but not in the present
state of knowledge of product locales”.
Subsequently, J.L. Frith [10] studied uniform-type structures from a more cat-

egorical point of view, also making use of frame covers, and P. Fletcher and
W. Hunsaker [6] introduced an entourage-like theory of uniformities, which they
proved to be equivalent to the covering one. As in the spatial setting, entourage-
like theories have shown to be more manageable than the covering ones in the
study of quasi-uniformities (see [7], [8], [9] and [13] and compare them with Frith’s
theory of quasi-uniformities via conjugate covers [10]).
Here, following the hint of J. Isbell, we present an alternative approach to

entourage uniformities, expressed in terms of the coproduct L ⊕ L, showing this
way that entourages in the style of Weil do work in the pointless context.
The paper is organized as follows. After Section 1, which reviews all the re-

quired background, namely the theory of entourage frame uniformities of P. Flet-
cher and W. Hunsaker and the construction of binary coproducts of frames in
terms of C-ideals, we present, in Section 2, an alternative notion of frame uni-
formity. We do so by introducing uniform structures on a frame L in terms of
subsets of the coproduct L ⊕ L. In Sections 3, 4 and 5 the nexus between this
type of uniformity and the one of P. Fletcher and W. Hunsaker is spelled out in
detail, leading to Theorem 5.4 which states that the two corresponding categories
are isomorphic:
We show, in Section 3, that a uniformity U in the sense of P. Fletcher and

W. Hunsaker yields a Weil uniformity ψ(U). Likewise, a Weil uniformity E yields
a uniformity, in the sense of P. Fletcher and W. Hunsaker, φ(E). Since we work
with L⊕ L as the frame of C-ideals of L× L, the knowledge of some facts about
C-ideals is essential for our approach. Namely, we need to know more about
the C-ideal of L × L generated by a down-set U of L × L: the point appears
to be Lemma 3.3, which enables us to control, in terms of smallness, all the
pairs (x, y) that go into the C-ideal generated by the diagonal {(x, x) ∈ L × L |
x is f -small}, and Lemma 3.1. The correspondences (L,U) 7−→ (L,ψ(U)) and
(L, E) 7−→ (L, φ(E)) give rise, respectively, to the functors Ψ and Φ. In the last
section, we conclude that ΦΨ = id and ΨΦ = id.
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1. Background

1.1 The category UFrm of (entourage) uniform frames.
Recall that L is a frame if it is a complete lattice satisfying the (infinite)

distributive law

a ∧
∨

S =
∨

{a ∧ t | t ∈ S} (a ∈ L, S ⊆ L)

and that a frame homomorphism is a map preserving finitary meets, including
the unit 1, and arbitrary joins, including the zero 0.
For general facts about frames we refer to Johnstone [12].
The following definitions and notations are taken from [6].
Let L be a frame and let F be the collection of all order-preserving maps from

L to L. If f ∈ F and x ∈ L, then x is f -small if x ≤ f(y) whenever x ∧ y 6= 0.

If B ⊆ F and x, y ∈ L, the relation y
B
⊳x means that there is an f ∈ B such that

f(y) ≤ x.

Definition 1.1.1 (Fletcher and Hunsaker [6]). A set B of sup-preserving maps
from L to L is an (entourage) uniformity base on L provided that for f ∈ B and
x, y ∈ L:

(i) B is a filter base with respect to ≤.
(ii) The collection of all f -small elements of L is a cover of L.
(iii) There exists a g ∈ B such that g ◦ g ≤ f .
(iv) x ∧ f(y) = 0 if and only if f(x) ∧ y = 0.

(v) x =
∨

{y ∈ L | y
B
⊳x}.

A subset U of F is called an (entourage) uniformity on L if it is generated by
an (entourage) uniformity base B on L, i.e.

U = {f ∈ F | there is a g ∈ B such that g ≤ f}.

An (entourage) uniform frame is a pair (L,U) where L is a frame and U is an (en-
tourage) uniformity on L. Let (L,U) and (M,V) be (entourage) uniform frames.
An (entourage) uniform frame homomorphism h : (L,U) −→ (M,V) is a frame
map h : L −→ M such that for every f ∈ U there exists a g ∈ V such that
g ◦ h ≤ h ◦ f .
In the sequel, when referring to these entourage uniformities and entourage

uniform frames, we shall forget the word “entourage” and we shall call them just
uniformities and uniform frames, respectively. The category of uniform frames
and uniform frame homomorphisms will be denoted by UFrm.

Remark 1.1.2. Note that condition (ii) implies that x ≤ f(x) for every x (and,
consequently, that fn ≤ fn+1, for every natural n) . Indeed, we have

x = x∧
∨

{y ∈ L | y is f -small} =
∨

{x∧ y | y is f -small and x∧ y 6= 0} ≤ f(x).
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From this fact we may also conclude that, if y
B
⊳x, then y ≤ x.

We say that f ∈ F is symmetric if it satisfies condition (iv) of Definition 1.1.1.
In [6] the authors established an isomorphism between UFrm and the category

of (covering) uniform frames defined by J. Isbell [11].

1.2 Coproducts of frames.
For a subset A of a poset (X,≤), let ↓A = {x ∈ X | x ≤ a for some a ∈ A}.

The set A is said to be a down-set if ↓ A = A. We shall denote by D(X) the
frame of all down-sets in X .
Let L be a frame. Recall (cf., e.g., [5], [12]) that the coproduct of the frame L

by itself

L
u1−→L⊕ L

u2←−L

can be constructed as follows: Take L × L with the obvious order. A down-set
A ⊆ L× L is a C-ideal if

{x} × S ⊆ A ⇒ (x,
∨

S) ∈ A

and
S × {y} ⊆ A ⇒ (

∨

S, y) ∈ A.

Put L ⊕ L as the frame of all C-ideals of L × L. Observe that the case S = ∅
implies that every C-ideal contains the set {(x, 0), (0, x) | x ∈ L} which we shall
denote by N . Obviously, each ↓ (x, y) ∪ N is a C-ideal. It is denoted by x ⊕ y.
Finally put u1(x) = x⊕ 1 and u2(y) = 1⊕ y. Thus x⊕ y = u1(x) ∧ u2(y). Every
element of L⊕L is of the form

∨

γ∈Γ(xγ ⊕ yγ), for some subset {(xγ , yγ) | γ ∈ Γ}
of L×L. For any morphism h : L −→M , we write h⊕ h : L⊕L −→M ⊕M for
the morphism given by (h⊕ h) ◦ ui = vi ◦ h (i = 1, 2). Obviously,

(h⊕ h)





∨

γ∈Γ

(xγ ⊕ yγ)



 =
∨

γ∈Γ

(h(xγ)⊕ h(yγ)).

2. Uniformities in terms of the frame coproduct L⊕ L: the category
WUFrm of Weil uniform frames

In the sequel L will always denote a frame. If U, V ∈ D(L × L) we denote by
U · V the set

{(x, y) ∈ L× L | there is a z ∈ L \ {0} such that (x, z) ∈ U and (z, y) ∈ V }

and by U ◦ V the C-ideal generated by U · V .
Note that the operation ◦ is associative (but generally not commutative) and

so bracketing is unnecessary for repeated compositions such as

Un = U ◦ U ◦ · · · ◦ U (n factors).
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Further we have:
For any U ∈ D(L × L), U−1 := {(x, y) ∈ L × L | (y, x) ∈ U} and CU := {x ∈

L | (x, x) ∈ U}.
For any U ∈ D(L × L) and x ∈ L, st(x,CU ) :=

∨

{y ∈ CU | y ∧ x 6= 0} (the
“star” of x in CU ).

For any E ⊆ L⊕ L and x, y ∈ L, y
E
⊳x means that E ◦ y ⊕ y ⊆ x⊕ x, for some

E ∈ E .

Definition 0.1 and Proposition 0.2 motivate our definition of Weil uniformity:

Definition 2.1. A Weil uniformity base on L is a set E of C-ideals such that:

(i) E is a filter base with respect to ⊆.
(ii) For each E ∈ E , CE is a cover of L.
(iii) For any E ∈ E there is a D ∈ E such that D ◦D ⊆ E.
(iv) For each E ∈ E , E−1 is also in E .

(v) For each x ∈ L, x =
∨

{y ∈ L | y
E
⊳x}.

A Weil uniformity is a set E of C-ideals, called entourages, for which there
exists a Weil uniformity base E ′ ⊆ E such that each member of E contains some
member of E ′. Clearly E is a Weil uniformity if and only if it is a filter satisfying
conditions (ii)–(v) above.
Usually it is more convenient to work with uniformities bases rather than to

work with uniformities.
A Weil uniform frame is just a pair (L, E) where L is a frame and E is a Weil

uniformity on L. These are the objects of the categoryWUFrm whose morphisms
— the Weil homomorphisms — are those frame maps h : (L, E) −→ (M,G) such
that (h⊕ h)(E) ∈ G for every E ∈ E .

Remarks 2.2. Let E be a Weil uniformity.

(i) It is useful to note that the symmetric entourages E of E , i.e. those for
which E = E−1, form a base for E . In fact, if E ∈ E then E−1 ∈ E so
E ∩ E−1 is a symmetric entourage contained in E.

(ii) Note that condition (ii) of Definition 2.1 implies that y ≤ st(y, CE), for

every y ∈ L and E ∈ E . Therefore y
E
⊳x implies that y ≤ x since, for any

z ∈ CE satisfying z ∧ y 6= 0, the pair (z, y) belongs to E ◦ y ⊕ y.
Condition (ii) also implies that every entourage E is contained in E2:
Consider (x, y) ∈ E. We have

y = y ∧
∨

{z | (z, z) ∈ E} ≤
∨

{z | (z, z) ∈ E, y ∧ z 6= 0}.

For any z such that (z, z) ∈ E and y ∧ z 6= 0, (x, z) ∈ E2, since (x, y ∧
z), (y ∧ z, z) ∈ E. Therefore (x,

∨

{z | (z, z) ∈ E, y ∧ z 6= 0}) ∈ E2 and,
consequently, (x, y) ∈ E2.
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Proposition 2.3. Let E be a Weil uniformity on L and let x, y ∈ L. The following
assertions are equivalent:

(i) y
E
⊳x.

(ii) y ⊕ y ◦ E ⊆ x⊕ x, for some E ∈ E .
(iii) E ◦ y ⊕ 1 ⊆ x⊕ 1, for some E ∈ E .
(iv) 1⊕ y ◦ E ⊆ 1⊕ x, for some E ∈ E .
(v) st(y, CE) ≤ x, for some E ∈ E .

Proof: We only prove that statements (i) and (v) are equivalent because the
proofs that each one of (ii), (iii) and (iv) is equivalent to (v) are similar.

(i) ⇒ (v): Cf. Remark 2.2 (ii).

(v)⇒ (i): In order to show that y
E
⊳x it suffices to prove that D ◦ y⊕ y ⊆ x⊕x

for any symmetric D ∈ E such that D2 ⊆ E. So, consider a, b, c ∈ L such that
(a, b) ∈ D, (b, c) ≤ (y, y) and a, b 6= 0. Then (a, b) ∈ D2 and, by the symmetry of
D, (b, a) ∈ D2, which forces (a∨b, a∨b) ∈ D2 ⊆ E, as (a, a) and (b, b) also belong
to D2. Thus a ∨ b ∈ CE and, therefore, a ≤ st(y, CE), since (a ∨ b) ∧ y ≥ b 6= 0.
Hence a ≤ x and c ≤ y ≤ st(y, CE) ≤ x which implies that (a, c) ∈ x⊕ x. �

Furthermore, y
E
⊳x implies, trivially, that E ◦ 1⊕ y ⊆ 1⊕ x, for some E ∈ E .

So, condition (v) of 2.1 could be formulated in the following equivalent way:

For each U ∈ L ⊕ L, U =
∨

{V ∈ L ⊕ L | V
E
⊳U}, where V

E
⊳U means that

E ◦ V ⊆ U for some E ∈ E .
Indeed, for every U =

∨

γ∈Γ(aγ ⊕ bγ) ∈ L⊕ L, we have

aγ⊕bγ =

(

∨

{x ∈ L | x
E
⊳aγ}

)

⊕

(

∨

{y ∈ L | y
E
⊳bγ}

)

=
∨

{x⊕y | x
E
⊳aγ , y

E
⊳bγ},

since, for every γ ∈ Γ, aγ =
∨

{x ∈ L | x
E
⊳aγ} and bγ =

∨

{y ∈ L | y
E
⊳bγ}. But

x
E
⊳aγ and y

E
⊳bγ imply, respectively, that E1◦x⊕1 ⊆ aγ⊕1 and E2◦1⊕y ⊆ 1⊕bγ,

for some E1, E2 ∈ E , thus E ◦ x⊕ y ⊆ (E ◦ x⊕ 1)∩ (E ◦ 1⊕ y) ⊆ aγ ⊕ bγ , for E =

E1∩E2 ∈ E . Consequently,
∨

{x⊕y | x
E
⊳aγ , y

E
⊳bγ} ⊆

∨

{V ∈ L⊕L | V
E
⊳aγ⊕bγ}.

Conversely, for every x ∈ L, x ⊕ 1 = {V ∈ L ⊕ L | V
E
⊳x ⊕ 1} ≤ (

∨

{y ∈ L |

y
E
⊳x}) ⊕ 1, because V

E
⊳x ⊕ 1 implies that, for every (a, b) ∈ V , a

E
⊳x, i.e. that

V ⊆ (
∨

{y ∈ L | y
E
⊳x})⊕ 1. Hence x ≤

∨

{y ∈ L | y
E
⊳x}.

3. The functor Ψ : UFrm −→WUFrm

Before stating a way of obtaining a Weil uniformity base from a uniformity
base we need some technical lemmas.
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The map

k0 : D(L × L) −→ D(L × L)

U 7−→ {(x,
∨

S) | {x} × S ⊆ U}
⋃

{(
∨

S, y) | S × {y} ⊆ U}

is a preclosure operator (it is, even, a prenucleus [1]) and, consequently,

Fix(k0) := {U ∈ D(L× L) | k0(U) = U} = L⊕ L

is a closure system, and the associated closure operator is then given by k(U) =
⋂

{V ∈ L ⊕ L | U ⊆ V }, i.e. k(U) is the C-ideal generated by U . Moreover we
have:

Lemma 3.1. Let U, V ∈ D(L× L). Then:

(i) k0(U) · V ⊆ k0(U · V ) and U · k0(V ) ⊆ k0(U · V ).
(ii) k(U) ◦ k(V ) = U ◦ V .
(iii) If U is symmetric then k(U) is symmetric.

Proof:

(i) Consider (x, y) ∈ k0(U) · V and z 6= 0 such that (x, z) ∈ k0(U) and
(z, y) ∈ V . If (x, z) = (x,

∨

S) for some S with {x} × S ⊆ U , there
is a non-zero s ∈ S such that (x, s) ∈ U and (s, y) ∈ V and, therefore,
(x, y) ∈ U · V ⊆ k0(U · V ). On the other hand, if (x, z) = (

∨

S, z) for
some S with S × {z} ⊆ U , (s, y) ∈ U · V for each s ∈ S and, therefore,
(x, y) ∈ k0(U · V ).
By symmetry, we also have that U · k0(V ) ⊆ k0(U · V ).

(ii) It suffices to show that k(U) · k(V ) ⊆ k(U · V ). For this, consider the
non-empty set

E = {A ∈ D(L × L) | U ⊆ A ⊆ k(U), A · V ⊆ k(U · V )}.

By (i), if A ∈ E then also k0(A) ∈ E. On the other hand, for any non-
void X ⊆ E,

⋃

X ∈ E, since (
⋃

X) · V ⊆
⋃

A∈X(A · V ). Therefore
S =

⋃

A∈E
A belongs to E, i.e. E has a largest element S. But k0(S) ∈ E

so S = k0(S), i.e. S is a C-ideal. Hence k(U) = S ∈ E and, consequently,
k(U) · V ⊆ k(U · V ). By symmetry, U · k(V ) ⊆ k(U · V ).
In conclusion, we have k(U) · k(V ) ⊆ k(U · k(V )) ⊆ k2(U · V ) = k(U · V ),
as desired.

(iii) Consider a symmetric U ∈ D(L × L) and let

E = {A ∈ D(L× L) | U ⊆ A ⊆ k(U), A−1 = A}.

The set E is non-empty and k0(A) ∈ E whenever A ∈ E. Moreover, for
any non-voidX ⊆ E,

⋃

X ∈ E. Therefore E has a largest element S which
must be k(U) since S = k0(S) and U ⊆ S ⊆ k(U). This says that k(U) is
symmetric. �
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The map k can also be constructed from k0, by transfinite induction over the
class Ord of ordinals:
if one defines, for any U ∈ D(L× L) and any ordinal β,

• k00(U) = U

• kβ0 (U) = k0(k
α
0 (U)), if β = α+ 1

• kβ0 (U) =
∨

{kα0 (U) | α < β}, if β is a limit ordinal,

then k =
∨

γ∈Ord k
γ
0 . So, the lemma can be proved by transfinite induction.

The approach we followed (cf. [1] and [2]) in the above lemma avoids the use of
ordinals.

Let U ⊆ F . For each f ∈ U define Ef = k({(z, z) ∈ L× L | z is f -small}) and
denote the set {Ef | f ∈ U} by EU .

Lemma 3.2. Consider f ∈ F .

(i) If X = {xγ | γ ∈ Γ} is a set of f -small elements such that xγ ∧ xδ 6= 0 for

every γ, δ ∈ Γ, then
∨

X is f2-small.

(ii) If f is symmetric and x is f -small, then f(x) is f3-small.

Proof:

(i) Cf. proof of Proposition 2.2 of [6].
(ii) Trivial. �

We say that a pair (x, y) ∈ L×L is f -small if x∨ y ≤ f(z) whenever x∧ z 6= 0
and y ∧ z 6= 0. Note that this does not imply that x and y are f -small. However,
(x, x) is f -small if and only if x is f -small.

Lemma 3.3. Let f ∈ F satisfy f(x) ≥ x for all x ∈ L. If (x, y) ∈ Ef then (x, y)
is f -small.

Proof: Since Ef is symmetric it suffices to show that x ≤ f(z) whenever (x, y) ∈
Ef and y ∧ z 6= 0. But this is consequence of the following result:

(1) if f(x1) ≤ y1 and f(x2) ≤ y2 then Ef ◦ x1 ⊕ x2 ⊆ y1 ⊕ y2.

In fact, by (1), Ef ◦ z ⊕ z ⊆ f(z) ⊕ f(z) thus (x, z) ∈ f(z) ⊕ f(z) because
(x, y ∧ z) ∈ Ef and (y ∧ z, z) ∈ z ⊕ z.
So, let us show (1):
Denote the set {(z, z) | z is f -small } by F . Then Ef ◦ x1 ⊕ x2 = k( ↓F ) ◦ k( ↓

{(x1, x2)}). Hence, according to Lemma 3.1 (ii), Ef ◦ x1 ⊕ x2 = ↓F ◦↓{(x1, x2)}.
Consider (a, b) ∈↓F and (b, c) ∈↓{(x1, x2)} with b 6= 0. We have (a, b) ≤ (z, z)
for some f -small element z and z ∧ x1 ≥ b 6= 0. Then a ≤ z ≤ f(x1) ≤ y1 and,
on the other hand, c ≤ x2 ≤ f(x2) ≤ y2, thus (a, c) ∈ y1 ⊕ y2. �
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Remark 3.4. In the sequel, we only need the following particular case of
Lemma 3.3:

Let f ∈ F satisfy f(x) ≥ x for all x ∈ L. If (x, x) ∈ Ef then x is

f -small.

We are now able to prove that EU is a Weil uniformity base whenever U is
a uniformity base:

Proposition 3.5. Let U be a uniformity base on a frame L. Then EU is a Weil
uniformity base on L.

Proof: We just need to check conditions (i)–(v) of Definition 2.1:

(i) Let Ef , Eg ∈ EU . Take h in U such that h ≤ f ∧ g. If x is h-small, then
it is also f -small and g-small, so Eh ⊆ Ef ∩Eg . Thus EU is a filter base.

(ii) It is obvious.
(iii) We first prove thatE2f ⊆ Ef2 , for every f ∈ U . According to Lemma 3.1(ii)

we have E2f = ( ↓ F )
2, where F = {(z, z) | z is f -small}. So, consider

(a, b) ≤ (x, x) and (b, c) ≤ (y, y), x and y f -small elements and b 6= 0.
Then x ∧ y ≥ b 6= 0 and thus, by Lemma 3.2 (i), x ∨ y is f2-small. Hence
(a, c) ∈ Ef2 .

Now, let Eg ∈ EU and take f ∈ U such that f
2 ≤ g. Then E2f ⊆ Ef2 ⊆ Eg.

(iv) It is obvious, by Lemma 3.1 (iii).
(v) This is an immediate consequence of the fact that

x
U
⊳y if and only if x

EU
⊳y

that we prove next.

If x
U
⊳y then there is an f ∈ U with f(x) ≤ y. We claim that st(x,CEf

) ≤

y. Consider (z, z) ∈ Ef such that z ∧ x 6= 0. By Remark 3.4, z is f -small
thus z ≤ f(x) ≤ y. Hence st(x,CEf

) ≤ y.

Conversely, assume that st(x,CEf
) ≤ y and consider g ∈ U , symmet-

ric, such that g3 ≤ f . We require g(x) ≤ y. Certainly, since g is sup-
preserving,

g(x) = g
(

x ∧
∨

{z | z is g-small}
)

=
∨

{g(x ∧ z) | z is g-small and x ∧ z 6= 0}

≤
∨

{g(z) | z is g-small and x ∧ z 6= 0}.

But the symmetry of g implies that g(z) is g3-small (recall part (ii) of
Lemma 3.2) and then f -small so (g(z), g(z)) ∈ Ef . In case x ∧ z 6= 0,
g(z) ∧ x is also non-zero so g(z) ≤ y. Therefore, g(x) ≤ y. �
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In what follows, if U is a uniformity on L, then ψ(U) denotes the Weil uni-
formity for which EU is a base. The correspondence (L,U) 7−→ (L,ψ(U)) is
functorial. Indeed, it is the function on objects of a functor Ψ : UFrm −→ WUFrm
whose function on morphisms is described in the following proposition:

Proposition 3.6. Let (L,U) and (M,V) be uniform frames and let h : (L,U) −→
(M,V) be a uniform frame homomorphism. Then h : (L,ψ(U)) −→ (M,ψ(V)) is
a Weil homomorphism.

Proof: Consider Ef ∈ EU (f ∈ U) and take f
′ ∈ U , symmetric, such that

f ′
3 ≤ f . Since h is a uniform frame homomorphism there is a g ∈ V such
that g ◦ h ≤ h ◦ f ′. We only have to show that Eg ⊆ (h ⊕ h)(E

f
′3) because

(h ⊕ h)(E
f
′3) ⊆ (h ⊕ h)(Ef ). So, consider a non-zero g-small element x of M .

Since
x =

∨

{x ∧ h(z) | z ∈ L, z is f ′-small},

there is a z ∈ L, f ′-small, such that x ∧ h(z) 6= 0, which implies that x ≤
g ◦ h(z) ≤ h ◦ f ′(z). Consequently, (h ⊕ h)(f ′(z) ⊕ f ′(z)) ⊆ (h ⊕ h)(E

f
′3), that

is, h ◦ f ′(z) ⊕ h ◦ f ′(z) ⊆ (h ⊕ h)(E
f
′3), and so (x, x) ∈ (h ⊕ h)(Ef ′3). Thus

Eg ⊆ (h⊕ h)(Ef ′3), as we claimed. �

4. The functor Φ :WUFrm −→ UFrm

Let E ⊆ L⊕ L. For each E ∈ E define fE : L −→ L by fE(x) = st(x,CE) and
denote the set {fE | E ∈ E} by UE .

Proposition 4.1. Let E be a Weil uniformity base on a frame L. Then UE is
a uniformity base on L.

Proof: Easily, every fE (E ∈ E) is sup-preserving. We need to check conditions
(i)–(v) of Definition 1.1.1.

(i) Let fD, fE ∈ UE . In order to prove that UE is a filter base just take fF
for some entourage F such that F ⊆ D ∩ E.

(ii) It is an immediate consequence of the fact that x is fE-small whenever
x ∈ CE .

(iii) For fE ∈ UE consider D ∈ E such that D
2 ⊆ E. We claim that fD

2 ≤ fE .
In fact, fD

2(x) =
∨

{y ∈ L | (y, y) ∈ D, y∧st(x,CD) 6= 0}. Consider y ∈ L
with (y, y) ∈ D and y ∧ st(x,CD) 6= 0. Then there is a z ∈ L such that
(z, z) ∈ D, z∧x 6= 0 and z∧y 6= 0. Therefore (y, y∧z) ∈ D and (y∧z, z) ∈
D thus (y, z) ∈ E. Similarly, (z, y) ∈ E. Also (y, y), (z, z) ∈ D2 ⊆ E. But
E is a C-ideal so (y ∨ z, y ∨ z) ∈ E. In conclusion, (y ∨ z, y ∨ z) ∈ E and
(y ∨ z) ∧ x ≥ z ∧ x 6= 0, hence y ≤ fE(x).

(iv) Let E ∈ E and x, y ∈ L. Then we have that

(2) x ∧ fE(y) = 0⇔
∨

{x ∧ u | (u, u) ∈ E and u ∧ y 6= 0} = 0
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and, analogously,

(3) fE(x) ∧ y = 0⇔
∨

{y ∧ u | (u, u) ∈ E and u ∧ x 6= 0} = 0.

Obviously (2) and (3) are equivalent.

(v) Trivial, since y
E
⊳x if and only if y

UE

⊳x. �

In what follows, if E is a Weil uniformity on L, then φ(E) denotes the uniformity
generated by UE . The correspondence (L, E) 7−→ (L, φ(E)) is functorial:

Proposition 4.2. Let (L, E) and (M,G) be Weil uniform frames and let h :
(L, E) −→ (M,G) be a Weil homomorphism. Then h : (L, φ(E)) −→ (M,φ(G)) is
a uniform frame homomorphism.

Proof: Let fE ∈ UE , where E ∈ E . Take D ∈ E , symmetric, such that D
2 ⊆ E.

Since h is a Weil homomorphism, (h ⊕ h)(D) ∈ G. In order to show that h :
(L, φ(E)) −→ (M,φ(G)) is uniform it suffices to show that f(h⊕h)(D) ◦h ≤ h ◦ fE .

So, fix x ∈ L and take y ∈ M such that (y, y) ∈ (h⊕ h)(D) and y ∧ h(x) 6= 0.
Then (y, y∧h(x)) ∈ (h⊕h)(D) and (y∧h(x), h(x)) ∈ h(x)⊕h(x) and, consequently,
(y, h(x)) ∈ (h⊕h)(D)◦h(x)⊕h(x). Further, since D is of the form

∨

γ∈Γ(aγ⊕bγ),

for some subset {(aγ , bγ) | γ ∈ Γ} of L× L, we have that

(h⊕ h)(D) ◦ h(x)⊕ h(x) = (h⊕ h)





∨

γ∈Γ

(aγ ⊕ bγ)



 ◦ h(x) ⊕ h(x)

= 〈
⋃

γ∈Γ

(

h(aγ)⊕ h(bγ)
)

〉 ◦ 〈 ↓(h(x), h(x))〉,

so, by Lemma 3.1 (ii), (h⊕h)(D)◦h(x)⊕h(x) =
⋃

γ∈Γ((aγ)⊕h(bγ)) ◦↓(h(x), h(x)).

But
⋃

γ∈Γ((aγ)⊕ h(bγ)) ◦↓(h(x), h(x)) is contained in h ◦ fE(x)⊕ h(x): For any

(y, z) ∈
⋃

γ∈Γ((aγ) ⊕ h(bγ)) ◦ ↓ (h(x), h(x)) \ N , there is a w ∈ L \ {0} and

a γ ∈ Γ such that (y, w) ≤ (h(aγ), h(bγ)) and (w, z) ≤ (h(x), h(x)). It follows
that y ≤ h(aγ ∨ bγ) and, therefore, that y ≤ h ◦ fE(x). Indeed, (aγ ∨ bγ) ∧ x 6= 0
because h(bγ∧x) ≥ w 6= 0 and, by the symmetry ofD, (aγ∨bγ , aγ∨bγ) ∈ D2 ⊆ E.
In conclusion, we have that (y, h(x)) ∈ (h⊕ h)(D) ◦ h(x)⊕ h(x) ⊆ h ◦ fE(x)⊕

h(x). Hence y ≤ h ◦ fE(x) which implies that f(h⊕h)(D)(h(x)) ≤ h(fE(x)), as

required. �

We shall denote the functor defined above by Φ.

5. The isomorphism between WUFrm and UFrm

Finally, let us show that functors Φ and Ψ define an isomorphism between the
categories WUFrm and UFrm.
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Lemma 5.1. If g ∈ F is symmetric and the set of g-small elements is a cover,
then g ≤ fE

g3
.

Proof: By definition fE
g3
(x) = st(x,CE

g3
). On the other hand

g(x) = g
(

∨

{x ∧ y | y is g-small}
)

=
∨

{g(x ∧ y) | y is g-small and x ∧ y 6= 0}.

Consider any g-small element y such that x ∧ y 6= 0. By Lemma 3.2 (ii), g(x ∧ y)
is g3-small so (g(x ∧ y), g(x ∧ y)) ∈ Eg3 . Since g(x ∧ y) ∧ (x ∧ y) = x ∧ y 6= 0, it
follows that

g(x ∧ y) ≤ fE
g3
(x ∧ y) ≤ fE

g3
(x).

Hence g(x) ≤ fE
g3
(x). �

The corresponding property for C-ideals is the following:

Lemma 5.2. If D is a symmetric C-ideal such that CD is a cover of L, then
D ⊆ Ef

D2
.

Proof: Consider (x, y) ∈ D \ N . Then (x ∨ y, x ∨ y) ∈ D2 because (x, y),
(y, x), (x, x) and (y, y) belong to D2. Since every member of CD2 is fD2-small,
(x ∨ y, x ∨ y) ∈ Ef

D2
and, consequently, (x, y) ∈ Ef

D2
. �

Proposition 5.3. Let E be a Weil uniformity on L and let U be a uniformity
on L. Then ψφ(E) = E and φψ(U) = U .

Proof: We first show that ψφ(E) = E . Consider Eφ(E) = {Eg | g ∈ φ(E)}. By
Proposition 3.5, Eφ(E) is a Weil uniformity base. It suffices to show that it is
a base for E . To prove this, consider Eg ∈ Eφ(E) and E ∈ E such that g = fE .

One can take D ∈ E , symmetric, such that D2 ⊆ E. By Lemma 5.2, D ⊆ Eg so

Eφ(E) ⊆ E . Finally assume D ∈ E and choose D
′ ∈ E such that D

′2 ⊆ D. We

show that EfD′
⊆ D:

Consider x 6= 0, fD′-small. We have that x ≤
∨

{z | (z, z) ∈ D′, z ∧ x 6= 0}.
Since x is fD′-small, we have x ≤ fD′(z) =

∨

{y | (y, y) ∈ D, y ∧ z 6= 0}, for
any z such that (z, z) ∈ D′ and x ∧ z 6= 0. For each y in this set we have that

(z, z ∧ y), (z ∧ y, y) ∈ D′, which implies that (z, y) ∈ D
′2. Therefore (z, x) ∈ D

′2

and, consequently, (x, x) ∈ D
′2 ⊆ D.

Now let us prove the second equality. Consider Uψ(U) = {fE | E ∈ ψ(U)}. By
Proposition 4.1, Uψ(U) is a uniformity base. It suffices to show that it is a base for
U . For any fE ∈ Uψ(U) take g ∈ U with E = Eg and consider h ∈ U , symmetric,

such that h3 ≤ g. We know, by Lemma 5.1, that h ≤ fE , so fE ∈ U , i.e.
Uψ(U) ⊆ U . Finally, let g ∈ U . By Remark 3.4, y is g-small whenever (y, y) ∈ Eg.

Therefore fEg
(x) =

∨

{y ∈ L | (y, y) ∈ Eg, y ∧ x 6= 0} ≤ g(x). �

In conclusion, the functors Φ and Ψ are mutually inverse. Thus:



Weil uniformities for frames 369

Theorem 5.4. The categories WUFrm and UFrm are isomorphic. �

Remark 5.5. In the spatial setting, by dropping the symmetry condition one
gets the notion of quasi-uniformity. Here, if we drop the symmetry (condition
(iv) in Definition 2.1), we must observe the following: the equivalence between
conditions (i) and (ii) of Proposition 2.3 is no longer valid. In fact, we have two

distinct order relations,
E

⊳1 and
E

⊳2, induced by the family E of C-ideals:

x
E

⊳1y ≡ ∃E ∈ E : E ◦x⊕x ⊆ y⊕y and x
E

⊳2y ≡ ∃E ∈ E : x⊕x◦E ⊆ y⊕y.

These order relations define the subframes

Li :=

{

x ∈ L : x =
∨

{y ∈ L | y
E
⊳ix}

}

(i = 1, 2)

of L. Then, in order to get the appropriate definition ofWeil quasi-uniform frame,
we have to replace the admissibility condition (v) in Definition 2.1 by the condition
(equivalent, under symmetry) that the triple (L,L1, L2) is a biframe [3].
Indeed, the corresponding category of Weil quasi-uniform frames and Weil ho-

momorphisms is isomorphic to the category of quasi-uniform frames of J.L. Frith
[10] (cf. [13] for the details), defined in terms of the so called conjugate cover pairs
of biframes, and, therefore, it is also isomorphic to the category of quasi-uniform
frames of P. Fletcher, W. Hunsaker and W. Lindgren [9]. Thus one can rephrase
in our context all the results of [7] and [8].

Acknowledgement. I would like to express my gratitude to Professor B. Ba-
naschewski for suggesting me the investigation of a theory of entourage uniformi-
ties for frames, in the style of Weil, i.e. in terms of the frame coproduct L ⊕ L,
and for his helpful comments on an earlier version of this paper, namely his sug-
gestion to apply the techniques of ([1, Section 1]) to avoid the use of ordinals in
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