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On essential sets of function algebras

in terms of their orthogonal measures

Jan Čerych

Abstract. In the present note, we characterize the essential set of a function algebra
defined on a compact Hausdorff space X in terms of its orthogonal measures on X.

Keywords: compact Hausdorff space X, the sup-norm algebra C(X) of all complex-
valued continuous functions on X, its closed subalgebras (called function algebras),
measure orthogonal to a function algebra

Classification: 46J10

Let X be a compact Hausdorff topological space. Denote by C(X) the com-
mutative Banach algebra, consisting of all continuous complex-valued functions
on X (with respect to usual point-wise algebraic operations) endowed with the
sup-norm.
By a function algebra on X we mean any closed subalgebra of C(X) which

contains constant functions on X and which separates points of X .

Definition. A function algebra A on X is said to be a maximal one if it is
a proper subset (i.e., a proper subalgebra) of C(X) and has the following property:
whenever B is a function algebra onX , B ⊃ A, then either B = A or B = C(X).

A being a function algebra on X , the closed subset E is said to be an essential
set of A if the following conditions are fulfilled:

(*) A consists of all continuous prolongations of functions in the algebra of
restrictions A/E (i.e., the algebra of all restrictions of functions in A from
the set X to its subset E).

(**) Whenever a closed subset F of X has the same property as E in (*),
then E ⊂ F (or, E is a unique minimal closed subset of X satisfying the
condition (*)).

The notion “essential set” is due to Bear, who proved in [1] that any maximal
algebra on X has an essential set.
Hoffman and Singer in [2] found an essential set of any, not necessarily maximal,

function algebra on X .

Denote by M(X) the space of all complex Borel regular measures on X , i.e.,
by the Riesz Representation Theorem, the dual space of C(X).
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The annihilator A⊥ of a function algebra A is defined to be the set of all
measures m ∈ M(X) such that

∫
f dm = 0 for any f ∈ A, or the set of all

measures orthogonal to A. The dual space A′ of A is then canonically isomorphic
to the quotient space M(X)/A⊥.
Now endow M(X) with the weak-star topology: it is well known that M(X)

becomes a locally convex topological linear space with the dual space C(X).

Our aim here is to characterize the essential set of a function algebra A by
means of the properties of the measures in A⊥. Remark that our construction is
rather simpler than the classical one.

Theorem. Let A be a function algebra on X . Denote by E the closure of the
union of all closed supports of measures in A⊥. Then E is the essential set of A.

Proof: Let f ∈ C(X), g ∈ A and let f/E = g/E, where f/E denotes the

restriction of the function f from X to E. If for m ∈ A⊥ we denote M = spt(m),
then ∫

f dm =

∫
M

f dm =

∫
M

g dm =

∫
g dm = 0,

hence f is orthogonal to A⊥ and, by Banach theorem, f ∈ A. It means that E
has the property (*) from Definition.
Now let a closed subset K have the property (*); we shall prove that K ⊃ E.

Suppose that K 6⊃ E. Then there is a measure m ∈ A⊥, whose closed support
is not a subset of K. Take x ∈ spt(m) r K. Let V be an open neighbourhood
of x in X such that its closure V is disjoint with K. We shall find a function
f ∈ C(V ) which fulfills the following two conditions:

spt(f) ⊂ V,

∫
V

f dm 6= 0,

where spt(f) means the closed support of f . Denote by g such a function in C(X),
which is equal to f on V and equal to 0 off V . Then g/K = 0 ∈ A/K, but

∫
g dm =

∫
V

g dm =

∫
V

f dm 6= 0

and then g 6⊥ A⊥, so g /∈ A. It follows that K has not the property (*). �

Now the following question arises: whether the word “closure” in Theorem
may be omitted, or whether the essential set E of a function algebra A on X is
composed of the union of closed supports of all measures in A⊥, without closure.
We shall show that it is true if X is a metric space (Proposition), but in general
it is not the case (Example).
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Proposition. Let X be a compact metric space, A a function algebra on X .
Then the essential set E of A is equal to the union of closed supports of all mea-
sures in A⊥. (Especially, the union of closed supports of all orthogonal measures
is a closed set.)

Proof: Let x ∈ E. We shall find the measure m ∈ A⊥ such that spt(m) ∋ x.

Denote by Un, n = 1, 2, . . . , the open balls in X with centres at x and radii 1n .

We shall construct a finite or infinite sequence of measures mn ∈ A⊥ such that

|mn|(X) ≤ 1,(1)

(spt(mn)r
n−1
∪

k=1
spt(mk)) ∩ Un

def
= Mn 6= ∅ and then |mn|(Mn) > 0,(2)

|mn|(X) < min
1≤k≤n−1

|mk|(Mk),(3)

where |m| means a total variation of a measure m.

By the Theorem, we can find a measure m1 ∈ A⊥ such that |m1|(X) = 1
for which spt(m1) ∩ U1 6= ∅. If x ∈ spt(m1), the proof is finished. If it is not
the case, then, by the Theorem, there exists the measure m2 ∈ A⊥ such that
(spt(m2) r spt(m1)) ∩ U2 6= ∅; (2) follows. Multiplying m2 by a small enough
nonzero constant, we can reach fulfilling (1) and (3). If x ∈ spt(m2), we are done.
In the opposite case, we shall continue the construction . . .
In the case the sequence {mn} is finite, the proof is finished. If it is not the

case, put

m =
∞∑

n=1

1

2n
mn.

By (1), it is m ∈ M(X). Also m ∈ A⊥ because mn ⊥ A.
Take an arbitrary n. By (2), it is |mn|(Mn) > 0, while |mk|(Mn) = 0 for

1 ≤ k ≤ n − 1. By (3), it is

|m|(Mn) = |
∞∑

k=n

1

2k
mk(Mn)| ≥

1

2n
|mn|(Mn)−

∞∑
k=n+1

1

2k
|mk|(X) ≥

≥
1

2n
|mn|(Mn)−

∞∑
k=n+1

1

2k
|mk|(X) >

1

2n
|mn|(Mn)−

1

2n
|mn|(Mn) = 0

and then spt(m) ∩ Un 6= ∅. Since n was arbitrary, Proposition follows. �

Now, we shall construct a function algebra A on X such that there exists
a point x ∈ E which is not contained in the closed support of any measure in A⊥.
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Example. Let us denote by ω1 the first uncountable ordinal number, put

Ω = {ω ordinal; ω ≤ ω1},

let C be the closed unit disk in the complex plane. Denote by Y the cartesian
product C ×Ω and let X arises from Y by “collapsing” the “last disk” C × {ω1}
into one point, say x1, i.e., X = Y/C × {ω1}. Let the algebra A consist of all
functions f continuous on X such that, for a fixed ordinal ω, ω < ω1, the function
z 7→ f(z, ω) is holomorphic in |z| < 1. Then the singleton {x1} does not meet the
closed support of any measure from A⊥, while the essential set E of A is whole X .

Proof: (1) Any function f ∈ C(Ω) is constant on a neighbourhood of ω1.
Let us suppose that f(ω1) = 0. Put, for natural n,

Un = {ω ordinal;ω ≤ ω1 , |f(ω)| <
1

n
},

ωn = sup {Ωr Un}, ω0 = sup
n

ωn.

It follows from the properties of ordinal numbers that ωn < ω1, so ω0 < ω1, and
f = 0 identically on the “ordinal interval” [ω0, ω1].

(2) Any function in C(X) is constant on some neighbourhood of x1: this follows
from (1).

(3) If m ∈ A⊥ then spt(m) ∩ {x1} = ∅.
Let m ∈ A⊥. Then the ordinal

ω2 = sup{ω ordinal; ω < ω1, (z, ω) ∈ spt(m) for some z, z ∈ C}

is less than ω1. Now let f ∈ A be a function which is equal to 0 on the set
S = (C × [1, ω2]) and equal to 1 on X r S. If the measure m contains a nonzero
multiple of the one-point mass at {x1}, it does not annihilate f , a contradiction.
It follows that spt(m) ⊂ S.

(4) Any “non-collapsed” disk supports the measure m ∈ M(X) for which∫
f dm =

∫ 1
0

∫
Cr(0)

f(z) dz dr

where Cr(0) = reit for t ∈ [0, 2π], 0 < r ≤ 1. But
∫

f dm = 0, by the classical

Cauchy Integral Theorem, and m ∈ A⊥. The union of such disks is X r {x1}.
�
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