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On the value distribution of a class of arithmetic functions

Werner Georg Nowak

Abstract. This article deals with the value distribution of multiplicative prime-inde-
pendent arithmetic functions (α(n)) with α(n) = 1 if n is N-free (N ≥ 2 a fixed integer),
α(n) > 1 else, and α(2n) → ∞. An asymptotic result is established with an error term
probably definitive on the basis of the present knowledge about the zeros of the zeta-
function. Applications to the enumerative functions of Abelian groups and of semisimple
rings of given finite order are discussed.
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1. Introduction and statement of result

Let (λn)n∈N0
be a sequence of real numbers such that, for a certain integer

N ≥ 2,

(1.1)

λn = 1 for n = 0, . . . , N − 1,
λn > 1 for n ≥ N,

λn → ∞ for n→ ∞ .

We define an arithmetic function (α(n))n∈N in the following way: If

n =
∏

p∈P

pη(p)

is the canonical prime factor decomposition of the positive integer n, then

α(n) :=
∏

p∈P

λη(p) .

Obviously, (α(n))n∈N is multiplicative and prime independent. Let Y denote the
set of values attained by α(n); under multiplication, this is a semigroup contain-
ing 1. In the present paper, we shall be concerned with the value distribution of
such sequences α(n), i.e., we will derive an asymptotic formula for the quantity

Ay(x) = #{n ∈ N, n ≤ x : α(n) = y },

This article is part of a research project supported by the Austrian Science Foundation
(Nr. P 9892-PHY).
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where y is some fixed element of Y and x is a large real variable.
The classic example for the problem under consideration is of course the count-

ing function of (isomorphism classes of) Abelian groups of order n. Here N = 2,
and λn = P (n), the number of unrestricted partitions of n elements. In this case,
the behaviour of Ay(x) has been studied by Ivić [2], Krätzel [4], [6], and Krätzel
and Wolke [7].
The objective of this article is to derive an asymptotic formula for Ay(x) which

will be both sharper and more general than those contained in the papers cited.
In fact, our result can be called “definitive” on the basis of the present knowledge
concerning zero-free regions of the Riemann zeta-function; the order term obtained
corresponds to the hitherto sharpest one in the Prime Number Theorem.

Theorem. For any y ∈ Y fixed, define d∗ ∈ N0 as the maximal integer for which
y

λd∗
N

∈ Y. Then there holds an asymptotic formula

Ay(x) = Cyx+ x
1/N

M(x)
∑

l=2

Pl(log log x)
(log x)l

+O(x1/N δ0(x)) .

For d∗ = 0 (i.e.,
y
λN

/∈ Y),

Ay(x) = Cyx+O(x
1/N δ0(x)) .

Here Pl(·) are polynomials of degree ≤ d∗ − 1, their coefficients are computable
real numbers ≪ (b∗l)

l, with appropriate b∗ > 0. Cy is a computable constant,
and

(1.2) M(x) := [c∗(log x)3/5(log log x)−6/5] .

Finally, here and throughout,

δj(u) := exp
(

−cj(log(2 + u))3/5(log log(2 + u))−1/5
)

for u ≥ 1 and suitable positive constants cj , j = 0, 1, . . . . All coefficients and
constants may depend on the sequence (λn) and on the element y ∈ Y.

2. Preparations for the proof

Throughout the paper, b and c (also with a subscript or superscript) denote
positive constants which may depend on the sequence (λn) and on the element
y ∈ Y. (This applies to all O- and ≪-constants as well.)
Let G be any analytic function without zeros on a certain simply connected

domain S of C which contains the real line to the right of s = σ0, where σ0 ∈ R
+
0 .

Suppose that G(s) ∈ R+ for real s > σ0, then we define, for s ∈ S,

logG(s) = logG(1 + σ0) +

∫ s

1+σ0

G′(z)

G(z)
dz,
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the path of integration being completely contained in S but otherwise arbitrary.
In our analysis, S will usually be a domain symmetric with respect to the real

line, with a “cut” along L = {s ∈ R : s ≤ σ0} (such that S ∩L = ∅). We will join
in the common abuse of terminology to speak of an “upper” and “lower edge”
of L ∩ ∂S, on which logG(s) are attributed two different values, depending on
whether L is approached from above or from below.

By a decomposition I of some fixed y ∈ Y, we mean a finite nondecreasing
sequence I = (i(j))Jj=1 of integers i(j) ≥ N with the property

y =

J
∏

j=1

λi(j) .

Clearly, only finitely many decompositions I correspond to each y ∈ Y. By NI we
denote the set of all natural numbers n of the form

(2.1) n = n1

J
∏

j=1

p
i(j)
j

where p1, . . . , pJ are distinct primes and n1 is an N -free natural number which is
relative prime to p1 . . . pJ . Thus n ∈ NI always implies that α(n) = y.

Finally, we shall denote by H the set of all complex-valued functions defined
by an absolutely convergent (ordinary) Dirichlet series on the half-plane Re s >
1

N+1 ; elements of H will be denoted by h, usually with some subscript and/or
superscript.

We are now ready to formulate our first auxiliary result.

Lemma 1 (cf. Krätzel and Wolke [7, Lemma 1]). For arbitrary fixed y ∈ Y and
a fixed decomposition I of y, define

φI(s) =
∑

n∈NI

1

ns
for Re s > 1 .

Then there exists a representation

φI(s) =
ζ(s)

ζ(Ns)

d
∑

k=0

hk(s)(log ζ(Ns))
k

with hk ∈ H and d ∈ N maximal such that i(d) = N (d = 0 if i(1) > N or if
y = 1). This provides an analytic continuation of the function φI to any simply

connected zero-free region of ζ(Ns) contained in Re s > 1
N+1 which avoids the

“cut” {s ∈ R : s ≤ 1
N }.
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Proof: For Re s > 1 (throughout the sequel), we may write

φI(s) =
∑

p1,...,pJ

′



















J
∏

j=1

p
i(j)
j





−s
∑

n1 N-free
(n1,P )=1

n−s1















,

where
∑′ means summation over all J-tuples of distinct primes p1, . . . , pJ , and

P = p1 . . . pJ for short. For p1, . . . , pJ fixed, let χN,P denote the characteristic
function of the positive integers n which are N -free and relative prime to P . Then
the inner sum is

∑

n∈N

χN,P (n)n
−s =

∏

p∈P

(

∞
∑

k=0

χN,P (p
k)p−ks

)

=

=
∏

p 6 |P

(

N−1
∑

k=0

p−ks

)

=
ζ(s)

ζ(Ns)

∏

p|P

1− p−s

1− p−Ns
.

Therefore,

(2.2) φI(s) =
ζ(s)

ζ(Ns)

∑

p1,...,pJ

′
J
∏

j=1

(

p
−i(j)s
j

1− p−sj

1− p−Nsj

)

.

We split up this sum in the form

(∗)
∑

p1,...,pd

′
d
∏

j=1

p−Nsj

1− p−sj

1− p−Nsj









∑

pd+1,...,pJ :

(P ′,P ′′)=1

′
J
∏

j=d+1

p
−i(j)s
j

1− p−sj

1− p−Nsj









,

where P ′ = p1 . . . pd, P
′′ = pd+1 . . . pJ . With p1, . . . , pd fixed, we apply Vino-

gradov’s lemma to the inner sum (µ denotes the Möbius function):

∑

pd+1,...,pJ :

(P ′,P ′′)=1

′
J
∏

j=d+1

p
−i(j)s
j

1− p−sj

1− p−Nsj

=

=
∑

t

µ(t)









∑

pd+1,...,pJ :

t|(P ′,P ′′)

′
J
∏

j=d+1

p
−i(j)s
j

1− p−sj

1− p−Nsj









.

For t = 1, the large bracket represents a function of the classH. For t > 1, some
of pd+1, . . . , pJ coincide with some of p1, . . . , pd. After resubstitution into (∗),
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these primes have exponents −N ′s with N ′ > N , thus they contribute a factor
which belongs to H, too. Repeated application of this trick finally yields

φI(s) =
ζ(s)

ζ(Ns)

d
∑

k=0

h∗k(s)
∑

p1,...,pk

′
k
∏

j=1

p−Nsj

1− p−sj

1− p−Nsj

,

with h∗k ∈ H. By the inclusion-exclusion principle, we can get rid of the condition
that the primes be distinct. Using the well-known identity

∑

p∈P

p−Ns
1− p−s

1− p−Ns
=
∑

p∈P

p−Ns + h∗∗(s) = log ζ(Ns) + h∗∗∗(s),

with h∗∗, h∗∗∗ ∈ H, we complete the proof of Lemma 1. �

One important ingredient in our argument — in order to obtain the sharp
error term we have stated — will be some information about the coefficients of
a Dirichlet series arising from the above factorization of φI(s).

Lemma 2. For fixed y ∈ Y and a fixed decomposition I of y, let the arithmetic
function β(n) be defined by the Dirichlet series representation

Z(s) :=
φI(s)

ζ(s)
=

∞
∑

n=1

β(n)

ns
(Re s > 1) .

Then it follows that

(i) β(n) 6= 0 implies that n is N -full*,
(ii) β(n)≪ (logn)J for all n ≥ 2.

Proof: Recalling (2.2), we have (at least for Re s > 1)

∞
∑

n=1

β(n)

ns
=
∏

p∈P

(

1− p−Ns
)

∑

p1,...,pJ

′
J
∏

j=1

(

p
−i(j)s
j

1− p−sj

1− p−Nsj

)

.

Expanding all the products on the right hand side obviously gives a series over
n−s where n ranges only over the N -full integers: This shows the first assertion.
To prove (ii), consider an arbitrary n ∈ N with β(n) 6= 0; necessarily n is N -

full. If χI denotes the characteristic function of NI it is clear from the definition
that

β(n) =
∑

ml=n

µ(m)χI(l) .

*A positive integer n is called N-full if in its canonical factorization into prime powers all
nonzero exponents are ≥ N .



122 W.G.Nowak

Therefore, it suffices to estimate the cardinality of the set

N = {(m, l) ∈ N
2 : ml = n, µ(m)χI(l) 6= 0 } .

As usual, let

ωK(k) =
∑

p∈P: pK |k

1, ω(k) = ω1(k) .

If (m, l) ∈ N , it follows from (2.1) that ωN (l) = J . Because n is N -full, m must
contain at least ω(n) − J of the prime factors of n. Since m is squarefree, the
number of possible values for m is

≤
ω(n)
∑

k=ω(n)−J

(

ω(n)

k

)

=

J
∑

k=0

(

ω(n)

k

)

≪ (ω(n))J ≪ (logn)J .

�

In our next Lemma, we summarize the present state of art about zero-free
regions of the Riemann zeta-function.

Lemma 3 (see Ivić [3]). Define for short

ψ(t) = (log t)2/3(log log t)1/3 (t ≥ 3)

and, for positive constants b1 ≥ 3 and b2,

η(t) =







1− b0 := 1− b2
ψ(b1)

for |t| ≤ b1,

1− b2
ψ(|t|)

for |t| ≥ b1 .

Then there exist values of b1, b2, b3 such that for all s = σ + it with

σ ≥ η(t)

it is true that
ζ(s) 6= 0,

and

(ζ(s))−1 ≪ (log(2 + |t|))b3 ,
log ζ(s)≪ (log(2 + |t|))b3 .

This deep result enables us to derive an asymptotic formula for the Dirichlet
summatory function of β(n).
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Lemma 4. For u→ ∞,

B(u) :=
∑

n≤u

β(n) = I(u) +R(u)

where

I(u) =
1

2πi

∫

C0

Z(
s

N
)us/N

ds

s
,

and
R(u)≪ u1/N δ1(u)

for some c1 > 0. Here C0 is the circle |s − 1| = b0 (b0 from Lemma 3), with
positive orientation, starting and ending at 1− b0.

Proof: By a version of Perron’s formula,

B1(u) :=

∫ u

1
B(wN ) dw =

1

2πi

∫ 2+i∞

2−i∞
Z(

s

N
)

us+1

s(s+ 1)
ds .

Now let C1 denote the path from 1 − i∞ to 1 − b0, C2 the path from 1 − b0 to
1 + i∞, both along σ = η(t) (s = σ + it as usual), and put C = C1 ∪ C0 ∪ C2. (b0
and η(t) are defined as in Lemma 3.) In view of Lemmas 1 and 3,

Z(
s

N
)≪ (log(2 + |t|))b4 for σ ≥ η(t) .

Thus we can replace the line of integration in the above integral by C. Defining

T =
1

δ2(u)

(with suitable c2 > 0), we see that (for j = 1, 2)

∫

Cj

Z(
s

N
)
us+1

s(s+ 1)
ds =

∫

|t|≥T
+

∫

|t|≤T
≪

≪ u2

T
(logT )b4 + u1+η(T ) ≪ u2δ3(u),

hence

(2.3) B1(u) = I1(u) +O(u
2δ3(u)),

where

(2.4) I1(u) :=
1

2πi

∫

C0

Z(
s

N
)
us+1

s(s+ 1)
ds .
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Employing a technique due to Rieger [11], we now put, for w ≥ 1,

(w) := B(wN )− I(wN ) + I(1),

then (2.3) implies that

(2.5)

∫ u

1
f(w) dw ≪ u2δ3(u) .

We have to estimate the difference f(w1)− f(w2) for w1 > w2. If QN (v) denotes
the number of N -full integers ≤ v, we deduce from Lemma 2 that

(2.6)
|B(wN1 )−B(wN2 )| ≪ (logw1)J

(

QN (w
N
1 )−QN (w

N
2 )
)

≪

≪ (w1 − w2)(logw1)
J + wθ1 (θ < 1),

where the last estimate is an immediate consequence of the asymptotique formula
for QN (v). (See Krätzel [5, p. 280].)
On the other hand,

(2.7) I(wN1 )− I(wN2 ) =

∫ w1

w2

(

1

2πi

∫

C0

Z(
s

N
)us−1 ds

)

du≪ w1 − w2 .

To see this, we replace C0 by C∗0(u) which we define as the boundary of

(2.8) {s ∈ C : |s− 1| ≤ b0, Re s ≤ 1 +
1

log(2u)
},

(with positive orientation, starting and ending at 1− b0), and observe that

(2.9) |Z( s
N
)| ≪ | log ζ(s)|d

|ζ(s)| ≪ |log |s− 1||d |s− 1| ≪ 1

for s close to 1, Re s ≥ 1.
Now (2.5), (2.6), and (2.7) establish just the requirements of “Hilfssatz 2” in

Rieger [11]. The latter implies that

B(wN ) = I(wN ) +O(wδ4(w)) .

Putting u = wN , we complete the proof of Lemma 4. �

We conclude this section with a simple but useful estimate for integrals related
to the incomplete Gamma function.
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Lemma 5. For τ, k ∈ R, W ≥ 3, suppose that

(2.10)
max(τ, k)

W
≤ 1
4
.

Then ∫ ∞

W
uτ e−u(log u)k du ≤ 2W τ e−W (logW )k .

Proof: Following an idea of De Koninck and Ivić [1, p. 12], we put

g(u) = log
(

uτ e−u(log u)k
)

,

then

g′(u) = −1 + τ

u
+
k

u

1

log u
≤ −1
2
for u ≥W.

Hence, by the mean value theorem,

g(u) ≤ g(W )− 12 (u−W ) for u ≥W.

Therefore, the integral in question is
∫ ∞

W
exp(g(u)) du ≤ exp(g(W ) + 12W )

∫ ∞

W
e−u/2 du = 2W τe−W (logW )k .

�

3. Proof of the Theorem

We employ an argument which is sometimes called the Selberg-Deligne
method and originates in a paper of Selberg [12]. An enlightening exposition can
be found in the textbook of De Koninck and Ivić [1].
A salient point of our approach is that we do not evaluate

∑

χI(n) directly
by Perron’s formula but start from an elementary convolution argument based on
the identity

(3.1) χI(n) =
∑

m|n

β(m),

along with the result of Lemma 4 on
∑

β(m). We define

(3.2) z = z(x) = xδ5(x), q = q(x) =
x

z
=

1

δ5(x)
,

with a positive constant c5 remaining at our disposition. By (3.1),

(3.3)
∑

n≤x

χI(n) =
∑

m≤z

β(m)[
x

m
] +

∑

k≤q

B(
x

k
) − B(z)[q] .
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We are going to evaluate the different terms occurring in this formula. Writing
{·} for the fractional part, we first note that, by Lemma 2,

(3.4)
∑

m≤z

β(m){ x
m
} ≪ (log z)JQN (z)≪ z1/N (log x)J .

Furthermore, in view of Lemma 4,

(3.5)

∑

m>z

β(m)

m
=

∫ ∞

z+

1

u
dB(u) =

=

∫ ∞

z

1

u
I ′(u) du+

∫ ∞

z+

1

u
dR(u) =

=

∫ ∞

z

1

u
I ′(u) du + O(z−1+1/N δ1(z)) .

Thus we obtain

(3.6)
∑

m≤z

β(m)[
x

m
] = AIx− x

∫ ∞

z

1

u
I ′(u) du + O(x1/N δ6(x)),

with

AI =
∞
∑

m=1

β(m)

m
,

by a suitable choice of c5 and c6. On the other hand,

(3.7)
∑

k≤q

R(
x

k
)≪ x1/N

∑

k≤q

k−1/N δ1(
x

k
)≪ x1/N q1−1/N δ1(z)≪ x1/N δ7(x),

and
∑

k≤q

I(
x

k
) =

∫ q

1
2

I(
x

u
) d[u] =

= I(
x

q
)[q] + x

∫ q

1

[u]

u2
I ′(
x

u
) du =

= I(z)[q] + x

∫ x

z
I ′(v)

dv

v
− x

∫ q

1
I ′(
x

u
)
{u}
u2
du,

by the substitution v =
x

u
in the next-to-last integral. Using this together with

(3.7) and (3.6) in (3.3), we arrive at

(3.8)
∑

n≤x

χI(n) =

= AIx − x

∫ ∞

x
I ′(u)

du

u
− x

∫ q

1
I ′(

x

u
)
{u}
u2
du + O(x1/N δ8(x)),
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where

(3.9) I ′(u) =
1

2πi

∫

1
N
C0

Z(s)us−1 ds .

To evaluate the two remaining integrals, we define

S(w, s) :=

∫ ∞

w
{u} u−s−1 du

and

T (x,w) :=
1

2πi

∫

1
N
C0

Z(s)S(w, s)xs ds,

for positive reals w and x and complex s with Re s > 0. Interchanging the order
of integration, we see from (3.9) that

T (x,w) = x

∫ ∞

w

{u}
u2

I ′(
x

u
) du .

Consequently, we obtain for the last integral in (3.8)

−x
∫ q

1
I ′(
x

u
)
{u}
u2
du = −x

∫ ∞

1
I ′(

x

u
)
{u}
u2
du + T (x, q)

or, in view of the well-known identity

∫ ∞

1
{u} u−s−1 du = 1

s− 1 −
ζ(s)

s

(valid for Re s > 0),

(3.10) −x
∫ q

1
I ′(
x

u
)
{u}
u2
du =

1

2πi

∫

1
N
C0

Z(s)

(

ζ(s) − s

s− 1

)

xs
ds

s
+ T (x, q) .

Similarly,

∫ ∞

x
I ′(u)

du

u
=

∫ ∞

x

(

1

2πi

∫

1
N
C0

Z(s)us−1 ds

)

du

u
=

=
1

2πi

∫

1
N
C0

Z(s)

(∫ ∞

x
us−2 du

)

ds = − 1
2πi

∫

1
N
C0

Z(s)

s− 1x
s−1 ds .

Hence (3.8) may be simplified to

(3.11)
∑

n≤x

χI(n) = AIx + I∗(x) + T (x, q) + O(x1/N δ8(x)),
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where

(3.12) I∗(x) :=
1

2πi

∫

1
N
C0

ζ(s)Z(s)xs
ds

s
=
1

2πi

∫

1
N
C0

φI(s)x
s ds

s
.

Our penultimate step is thus to estimate T (x, q). It is clear from the definition
that

S(w, σ + it)≪ w−σ,

hence

(3.13) T (x, q) = − 1
2πi

∫

1
N
C∗
0 (x)

Z(s)S(q, s)xs ds≪ (x
q
)1/N ≪ x1/N δ9(x),

where C∗0(x) is defined as in (2.8). (By (2.9), Z(s) is bounded on 1N C∗0(x).) For
d = 0, φI(s) does not contain any logarithmic terms, hence the integrand of I

∗(x)
is regular in an open disk containing C0. In this case, I∗(x) vanishes, and the
Theorem is immediate from (3.11) and (3.13).
For d > 0, the proof of the Theorem will be complete if we establish the

following last auxiliary result.

Lemma 6. For a fixed element y ∈ Y with y
λN

∈ Y and a fixed decomposition I
of y, the integral I∗(x) defined in (3.12) possesses the asymptotic expansion (as
x→ ∞)

I∗(x) = x1/N
M(x)
∑

l=2

Pl,I(log log x)
(log x)l

+O(x1/N δ10(x)) .

where M(x) is given by (1.2) and Pl,I(·) are polynomials of degree at most d− 1
with computable coefficients.

Proof*: We put x = wN and obtain

(3.14) I∗(wN ) =
1

2πi

∫

C0

φI(
s

N
)ws
ds

s
=

d
∑

κ=0

κ
∑

k=0

I∗k,κ(w
N ),

with

I∗k,κ(w
N ) :=

1

2πi

∫

C0

Hk,κ(s) (log(s− 1))k ws ds,

where

Hk,κ(s) = (−1)k
(

κ

k

)

ζ( sN )

ζ(s)
hκ(

s

N
) (logG(s))κ−k

1

s
,

*We give a detailed deduction of this result only for convenience of the reader, without any
particular claim of originality. Quite similar arguments may be found, e.g., in Wolke [13], [14],
Wu [15], and also in the author’s earlier papers [9], [10].
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G(s) = (s − 1)ζ(s) and hκ ∈ H as in Lemma 1. We note that Hk,κ(1) = 0 and
that each Hk,κ(s) is regular on some open disk around 1 with radius > b0. (We

obviously may assume b0 to be so small that this is true.) With M = M(wN )
according to (1.2), we thus obtain

(3.15) Hk,κ(s) =

M−1
∑

j=1

γj(s− 1)j + rM (s),

where

(3.16) γj ≪ bj , rM (s)≪ bM |s− 1|M ,

(with a constant b <
1

b0
), on the compact disk |s− 1| ≤ b0. Thus

(3.17)

I∗k,κ(w
N ) =

M−1
∑

j=1

γj

(

1

2πi

∫

C0

(s− 1)j (log(s− 1))k ws ds
)

+

+
1

2πi

∫

C0

rM (s) (log(s− 1))k ws ds .

In the main term, we substitute s→ s+1 and then replace C0−1 by the classical
“Hankel loop” H which consists of the lower edge of the real line from −∞ to −b0
(say), of the circle C0 − 1, and of the upper edge of the reals from −b0 to −∞.
Using the well-known formula

1

2πi

∫

H
es sa(log s)k ds =

dk

dak

(

1

Γ(−a)

)

(a ∈ C, k ∈ N0),

we obtain

(3.18)

1

2πi

∫

H
sj(log s)kws+1 ds =

= w(logw)−j−1
(

1

2πi

∫

H
es sj(log s− log logw)k ds

)

=

= w(logw)−j−1
k
∑

r=0

(−1)k−r
(

k

r

)

(log logw)k−r
dr

dar

(

1

Γ(−a)

)∣

∣

∣

∣

a=j
=

= w(logw)−j−1P∗
k(log logw),

where P∗
k(·) is a polynomial of degree k − 1. Estimating the error we thereby

commit, we get

γjw

∫ ∞

b0

uj(1 + | log u|k)w1−u du≪

≪ γjw(logw)
−j−1(log logw)k

∫ ∞

b0 logw
e−uuj

(

1 + | log u|k
)

du≪

≪ γjb
j
0w
1−b0(logw)−1(log logw)2k ,
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uniformly in 1 ≤ j ≤ M(wN ) − 1. Here we have used Lemma 5. Note that
(2.10) is certainly satisfied for w sufficiently large in view of (1.2). Summing over

j = 1, . . . ,M(wN )− 1 and appealing to the first clause of (3.16), we see that the
total contribution of these error terms is O(w1−b0 ), hence “harmless”.
We finally estimate the remainder integral in (3.17): Again we substitute

s→ s+ 1 and then replace the path of integration C0 − 1 by a new contour
consisting of a circle C(ε) around the origin with radius

(3.19) ε = ε(w) = b5(logw)
−2/5(log logw)−6/5

(starting and ending at the point −ε), and of two straight line segments joining
the points −b0 and −ε, on the lower and upper edge of the real line, respectively.
The contribution of these line segments to the remainder integral in (3.17) is,

by (3.16),

≪ bM w

∫ b0

ε
w−uuM | log u|k du≪

≪ bM w(logw)−M−1
∫ ∞

ε logw
e−u uM

(

| log u|k + (log logw)k
)

du .

To this last integral we again apply Lemma 5. In view of (1.2) and (3.19), con-
dition (2.10) is satisfied (for appropriate b5 > 0), and we see that the above
expression is

(3.20) ≪ (bε)M w1−ε(logw)−1(log logw)k .

Similarly, again using (3.16), we get

(3.21)

∫

C(ε)
rM (1 + s)(log s)

kw1+s ds≪

≪ w1+ε | log ε|kbMεM+1 ≪ w1+ε (log logw)kbMεM+1 .

Combining (3.20) and (3.21), we thus obtain

(3.22)

∫

C0

rM (s) (log(s− 1))k ws ds≪ w1+ε(bε)M .

Appealing to (1.2) and (3.19) one more time, we see that

log(wε(bε)M ) ≤ b5(logw)
3/5(log logw)−6/5 +

+ [c∗(log(wN ))3/5(log log(wN ))−6/5]×

×
(

log b+ log b5 −
2

5
log logw − 6

5
log log logw

)

≤

≤ −c
∗

5
(logw)3/5(log logw)−1/5
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for w sufficiently large. Consequently, the right-hand side of (3.22) is O(w δ11(w)).

Replacing finally w by x1/N , we complete the proof of Lemma 6.
Summation over all decompositions I of y gives the assertion of the Theorem—

apart from the bound O((b∗l)
l) for the coefficients of Pl. To establish the latter,

a close look at the proof of Lemma 6 (in particular at (3.16) and (3.18)) shows
that the only nontrivial step is to estimate

dr

dar

(

1

Γ(−a)

)∣

∣

∣

∣

a=j

(where j = l − 1, r ≤ d∗). By the functional equation and (a crude version of)
Stirling’s formula, this is

=
dr

dar

(

− 1
π
sin(πa)Γ(1 + a)

)∣

∣

∣

∣

a=j
≪

r
∑

i=0

|Γ(i)(1 + j)| ≪ (b∗∗l)l .

�

Remark. It follows from this bound for the coefficients of the Pl that, for
l ≤M(x), and x sufficiently large,

Pl(log log x)
(log x)l

≪ (b∗l)l
(log log x)d∗−1

(log x)l
≤

≤ exp (l(log b∗ + logM) + (d∗ − 1) log log log x− l log log x) ≤
≤ exp

(

− l
5 log log x

)

= (log x)−l/5 .

Consequently, for any fixed M∗ ∈ N,

M
∑

l=M∗+1

Pl(log log x)
(log x)l

≪M∗

≪M∗ (log log x)d∗−1
5(M∗+1)
∑

l=M∗+1

(log x)−l +
M
∑

5M∗+6

(log x)−l/5 ≪

≪ (log log x)d∗−1

(log x)M
∗+1

,

hence our Theorem implies that

(3.23) Ay(x) = Cyx+ x
1/N

M∗
∑

l=2

Pl(log log x)
(log x)l

+O(x1/N
(log log x)d∗−1

(log x)M
∗+1

),

for any fixed M∗ ∈ N, where the O-constant depends on M∗.



132 W.G.Nowak

4. Applications: Counting functions of certain algebraic structures

As we pointed out in the introduction, the function a(n) which counts the
number of non-isomorphic Abelian groups of order n is the classic example for
the class of arithmetic functions under consideration. In this important case,

(3.24) (λn)n∈N0
= (P (n))n∈N0

= (1, 1, 2, 3, 5, 7, 11, 15, . . .)

(P (·) the partition function), thus N = 2, Y ⊆ N, and d∗ is the maximal in-

teger such that 2d∗ |y. Our Theorem contains the sharpest result known todate
— the order term seems to be “definitive” on the basis of our present knowl-
edge about zero-free regions of the zeta-function. In particular, it improves
upon the work of Krätzel and Wolke [7] who established the counterpart of our
formula (3.23) and indicated that their method actually yields an error term

O(x1/2 exp(−c′(log x)1/3(log log x)−1/3)). In addition, they conjectured that an
improvement up to O(x1/2 exp(−c′′(log x)3/5(log log x)−1/5)) should be in reach
of present methods.

A related arithmetic function is S(n) which counts the number of (isomorphism
classes of) semisimple rings with n elements. Its generating Dirichlet series is

(4.1)

∞
∑

n=1

S(n)

ns
=
∏

m∈N

∏

k∈N

ζ(m2k s) (Re s > 1) .

(See, e.g., Ivić [3, p. 38], or Kühleitner [8] where the algebraic background is
sketched.) It is clear by (4.1) that S(n) = a(n) for all n ∈ N which are free
of fourth powers. (These are about 92,39% of all positive integers.) Actually,
the function S(n) was not studied a lot in the literature because its generating
function shares practically all useful analytic properties with

∏

k∈N

ζ(k s),

the generating function of a(n). (In particular, our Theorem immediately applies
to S(n) and yields an asymptotic formula which is identical with that for a(n),
apart from the value of Cy and the coefficients of the polynomials Pl.)
Quite recently, Kühleitner [8] had the idea to compare S(n) with a(n) by

studying power moments of the ratio ̺(n) =
S(n)
a(n)
. For any r > 0, he proved that

∑

n≤x

(̺(n))−r = A(r) x+ x1/4
M(x)
∑

k=0

A
(r)
k (log x)

−τ−1−k +O(x1/4δ(x))

where M(x) and δ(x) are as in our Theorem, and τ = 1− (56 )r.
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We turn our attention to the value distribution of this function ̺(n). Obviously
it is multiplicative, prime-independent and ≥ 1 throughout. We note that, for an
arbitrary prime p,

(S(pn))n∈N0
= (P ∗(n))n∈N0

= (1, 1, 2, 3, 6, 8, 13, 18, . . .),

where P ∗(n) is generated by

(4.2)

∞
∑

n=0

P ∗(n)zn =
∏

m∈N

∏

k∈N

(

1− zm
2k
)−1

=

=
∏

m∈N

(

∞
∑

n=0

P (n)zm
2n

)

(|z| < 1) .

Therefore, the sequence of λ’s corresponding to (̺(n))n∈N is

(λn)n∈N0
=

(

P ∗(n)

P (n)

)

n∈N0

= (1, 1, 1, 1, 65 ,
8
7 ,
13
11 ,
6
5 , . . . ) .

It is clear that N = 4, since, by (4.2), P ∗(n) > P (n) for n ≥ 4. Y is a discrete
semigroup of rationals ≥ 1. To verify our conditions (1.1), it remains to show that
λn → ∞. Let K0 ∈ N be fixed, then it follows from (4.2) that, for n sufficiently
large,

P ∗(n) ≥
∑

(m,l)∈N2
0
:

m+4l=n

P (m)P (l) ≥
K0
∑

l=0

P (n− 4l) .

In view of the classic asymptotic

P (n) ∼ 4
√
3

n
exp

(

π

√

2

3
n

)

,

this implies that

lim
n→∞

inf λn = lim
n→∞

inf

(

P ∗(n)

P (n)

)

≥ K0

which can be chosen arbitrarily large. Therefore, our Theorem applies and it
gives, for each y ∈ Y,

Ay(x) = Cyx+ x
1/4

M(x)
∑

l=2

Pl(log log x)
(log x)l

+O(x1/4δ0(x)),

where Pl are polynomials of degree ≤ d∗ − 1, and d∗ is the maximal integer such
that (65 )

−d∗ y ∈ Y. (Again, the whole sum over l vanishes if (65 )−1 y /∈ Y.)
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