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The Gδ-topology and incompactness of ωα

Isaac Gorelic

Abstract. We establish a relation between covering properties (e.g. Lindelöf degree) of
two standard topological spaces (Lemmas 4 and 5). Some cardinal inequalities follow as
easy corollaries.
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The present note is a contribution into the study of the Lindelöf degree in
powers of topological spaces. It answers a question of W.A.R. Weiss.

In what follows, κ∗ ⊂ βκ is the space of all free ultrafilters over a discrete set
of κ points, µκ ⊂ βκ is the space of all uniform ultrafilters over κ, ωα denotes
the α-th power of the discrete set of integers, (µκ, Gδ) is µκ with the finer Gδ

topology. L(X) denotes the Lindelöf degree of X , and e(X) := sup{A ⊂ X : A is
closed and discrete} — its extent.

Kenneth Kunen ([1]) proves L
(

µ(2κ)+, Gδ

)

≥ κ+, for the same κ’s as in our
Corollary 6. Our Corollary 6 gives here

L
(

µ(2κ)+, Gδ

)

≥ (2κ)+.

J. Mycielski proved ([2]), by inductive “stepping up”, that, for α less than the
1st weakly inaccessible cardinal,

e(ωα) = α.

Our Corollary 9 is a weaker statement for a larger class of cardinals. This Corol-
lary was obtained first by  Loś [3] in 1959 using group-theoretic methods. See also
Juhàsz [4].

Stevo Todorcevic̀ ([5]) proves, assuming the combinatorial statement �κ,

L(ωκ) = κ.



614 I. Gorelic

1. If A = {An : n < ω} is a countable disjoint partition of the cardinal κ, then

µκ =
(

·
⋃

n<ω

SA
n

)

∪̇
(

S̃A
)

, where

SA
n = {u ∈ µκ : An ∈ u} and

S̃A = {u ∈ µκ : {
⋃

n≥i

An : i < ω} ⊂ u}.

Note that S̃A is a Gδ set in µκ.

2. We say that a cover of κ∗ or of µκ is a proper Gδ-cover if every set in it is of
the form S̃A for some countable partition A of κ.

3. Lemma. If κ is a regular cardinal and µκ has a proper Gδ-cover of size α,
then ωα has a subset of size κ without a CAP (complete accumulation point).

Proof: Suppose µκ =
⋃

{S̃Aγ
: γ < α} for some collection C = {Aγ : γ < α}

of countable partitions Aγ = {Aγ
n : n < ω} of κ. For every point p ∈ κ

define its history in C p̄ : α −→ ω by setting p̄(γ) := n such that p ∈ Aγ
n. Let

P = {p̄ : p < κ} ⊂ ωα.

Claim 1. |P | = κ, moreover, for every p ∈ κ, Kp := {q ∈ κ : q̄ = p̄} has size
|Kp| < κ. Indeed, if not, then no v ∋ Kp is covered:

∀γ < α v /∈ S̃Aγ
,

because

v ∈ SAγ

p̄(γ).

And |P | = κ follows from the regularity of κ. �

Claim 2. P has no CAP in ωα. If not, let ϕ ∈ ωα be a CAP of P . Then for
every finite F ⊂ α

|{p < κ : p̄ ↾ F = ϕ ↾ F}| = κ,

by Claim 1.
Therefore, the family F := {Aγ

ϕ(γ)
: γ < α} has the uniform finite intersection

property (i.e. ∀F0 ∈ [F ]<ℵ0 | ∩F0| = κ). [By p̄ ↾ F = ϕ ↾ F ←→ p ∈
⋂

γ∈F

A
γ
ϕ(γ)

].

Pick a u ∈ µκ extending F .

Then u /∈
⋃

γ<α S̃Aγ
= µκ. Contradiction. Hence P ⊂ ωα has no CAP in ωα,

so it is as required. �
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4. Lemma. If κ∗ has a proper Gδ-cover of size α, then ωα has a closed discrete

subset of size κ.

Proof: Here we, similarly, study the family P of the histories of points p ∈ κ in
the family of partitions of κ defining our proper Gδ-cover, in this case of κ∗. Only
finitely many points p ∈ κ may have the same history, so |P | = κ, and, arguing as
in Claim 2 of the previous lemma, P ⊂ ωα has no limit points in ωα whatsoever.

�

5. Theorem. If κ is a regular not Ulam measurable cardinal, then

L
(

ωL(µκ,Gδ)
)

≥ κ.

6. Corollary. L(µκ, Gδ) ≥ κ, for the same κ’s.

Proof of Theorem 5 and Corollary 6: Since every ultrafilter over κ is
countably incomplete, there is a proper Gδ cover of µκ, and so L(µκ, Gδ) = α⇒
there is a proper Gδ-cover of size α ⇒ (By Lemma 3) ωα has a subset of size κ
without a CAP ⇒

(a) L(ωα) ≥ κ, and
(b) α ≥ κ (because α ≥ L(ωα)).

�

7. Corollary. L
(

ω2κ)

≥ κ, for the same κ’s as in Theorem 5.

Proof: (µκ, Gδ) has a base of size (2κ)ω = 2κ. Hence L(µκ, Gδ) ≤ 2κ and so

L(ω2κ
) ≥ L(ωL(µκ,Gδ)) ≥ κ. �

8. Theorem. . If κ is not Ulam measurable, then

L(κ∗, Gδ) ≥ L
(

ωL(κ∗,Gδ)) ≥ e(ωL(κ∗,Gδ)) ≥ κ.

Proof: Immediate from Lemma 4. �

9. Corollary. If κ < 1st measurable cardinal, then

e
(

ω2κ)

≥ κ,

i.e. ω2κ
has a closed discrete subspace of size κ.

Proof: Same as of Corollary 7. �

10. Corollary. Let λ be a strong limit cardinal ≤ the 1st measurable cardinal.

Then the set {e(ωα) : α < λ} is cofinal in λ. Hence, if cf(λ) > ω, the set
{α < λ : e(ωα) = α} is closed and unbounded in λ.

Remark. Murray Bell observed that the converses of Lemmas 3 and 4 are also
true.
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[4] Juhàsz I., On closed discrete subspaces of product spaces, Bull. Acad. Pol., vol. XVII, no. 4,

1969.
[5] Todorcevic̀ S., Incompactness of Nθ, Handwritten notes, 1990.

University of Toronto, Canada

(Received July 19, 1995)


		webmaster@dml.cz
	2012-04-30T16:39:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




