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On half-completion and

bicompletion of quasi-metric spaces

Elena Alemany, Salvador Romaguera

Abstract. We characterize the quasi-metric spaces which have a quasi-metric half-comp-
letion and deduce that each paracompact co-stable quasi-metric space having a quasi-
metric half-completion is metrizable. We also characterize the quasi-metric spaces whose
bicompletion is quasi-metric and it is shown that the bicompletion of each quasi-metric
compatible with a quasi-metrizable space X is quasi-metric if and only if X is finite.

Keywords: quasi-metric, quasi-uniform, half-completion, bicompletion, uniformly
weakly regular
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1. Introduction and preliminaries

Terms and concepts which are not defined may be found in [FL]. Paracompact
spaces are assumed to be regular. If A is a subset of a set X and T is a topology
on X , then TclA will denote the closure of A in the topological space (X, T ). The
letters N and R will denote the set of positive integer numbers and the set of real
numbers, respectively.
A quasi-pseudometric on a set X is a nonnegative real-valued function d on

X × X such that for all x, y, z ∈ X :
(i) d(x, x) = 0, and
(ii) d(x, y) ≤ d(x, z) + d(z, y).

If d satisfies the additional condition
(iii) d(x, y) = 0⇔ x = y,

then d is called a quasi-metric on X .
The conjugate of a quasi-(pseudo)metric d on X is the quasi-(pseudo)metric

d−1 given by d−1(x, y) = d(x, y). By d∗ we denote the (pseudo)metric given by
d∗(x, y) = max{d(x, y), d−1(x, y)}.
Each quasi-metric d on X generates a topology T (d) on X which has as a

base the family of d-balls {Bd(x, r) : x ∈ X, r > 0}, where Bd(x, r) = {y ∈ X :
d(x, y) < r}.
A topological space (X, T ) is called quasi-(pseudo)metrizable if there is a quasi-

(pseudo)metric d on X compatible with T , where d is compatible with T provided
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that T = T (d). (X, T ) is said to be strongly quasi-metrizable ([St], [Kü1]) if there
is a quasi-metric d on X compatible with T such that T (d) ⊆ T (d−1).
According to [RSV] a quasi-pseudometric space (X, d) is called d-sequentially

complete if each Cauchy sequence in (X, d∗) is T (d)-convergent to a point in X
and it is called left K-sequentially complete if each left K-Cauchy sequence in
(X, d) is T (d)-convergent to a point in X , where a sequence 〈xn〉 in (X, d) is
called left K-Cauchy if for each ε > 0 there is k ∈ N such that d(xn, xm) < ε
whenever k ≤ n ≤ m.
A quasi-pseudometric space (X, d) is called bicomplete ([RS], [KRS]) if the

pseudometric space (X, d∗) is complete. While every bicomplete quasi-pseudomet-
ric space is d-sequentially complete, it is easy to obtain examples of d-sequentially
complete non bicomplete quasi-metric spaces.
The Sorgenfrey line, the Kofner plane and the Pixley-Roy space on R are

relevant examples on nonmetrizable spaces which admit a compatible bicomplete
quasi-metric.
If (X, d) is a quasi-metric space, we say that (Y, q) is a quasi-metric d-sequential

completion of (X, d) if (Y, q) is a q-sequentially complete quasi-metric space such
that (X, d) is isometric to a T (q)-dense subspace of (Y, q) ([RSV]). Similarly we
define the notion of a quasi-metric left K-sequential completion of (X, d). The
example given in [RG] of a Hausdorff quasi-metric space which does not have
a quasi-metric d-sequential completion, suggests the question of characterizing
those quasi-metric spaces which admit a quasi-metric d-sequential completion. In
Proposition 1 of this paper we shall give an answer to this question.
According to [Sa], [FL], we say that (Y, q) is a bicompletion of the quasi-

pseudometric space (X, d) if (Y, q) is a bicomplete quasi-pseudometric space such
that (X, d) is isometric to a T (q∗)-dense subspace of (Y, q). If (X, d) is a quasi-
metric space and its bicompletion (Y, q) is also a quasi-metric space, we shall say
that (Y, q) is a quasi-metric bicompletion of (X, d). Salbany showed in [Sa] that
each T0 quasi-pseudometric space has an (up to isometry) unique T0 bicompletion.
In Proposition 4 of this paper we shall characterize the quasi-metric spaces which
admit a quasi-metric bicompletion. On the other hand, it is proved in [SR] that
each quasi-metric compatible with a quasi-metrizable space (X, T ) admits a quasi-
metric d-sequential completion if and only if (X, T ) is compact. The corresponding
result to quasi-metric bicompletions will be stated in Proposition 5, where we
shall show that the bicompletion of each quasi-metric compatible with a quasi-
metrizable space X is quasi-metric if and only if X is a finite set.
According to [FL], if (X,U) is a quasi-uniform space, we shall denote by U∗

the coarsest uniformity on X which is finer than U (i.e. U∗ = U ∨ U−1).
Let us recall that a quasi-uniform space (X,U) is half-complete provided that

each Cauchy filter on the uniform space (X,U∗) is T (U)-convergent to a point
in X ([De1]). (X,U) is called bicomplete ([Sa], [FL]) if each Cauchy filter on
(X,U∗) is T (U∗)-convergent to a point in X .
Let (X,U) be a T1 quasi-uniform space. A T1 quasi-uniform half-completion

of (X,U) is a half-complete T1 quasi-uniform space (Y,V) in which (X,U) can be
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quasi-uniformly embedded as a T (V)-dense subspace ([Ro3]).
Now let (X, d) be a quasi-pseudometric space and let U(d) be the quasi-

uniformity on X generated by d (i.e. U(d) is the quasi-uniformity on X that
has as a base the family of all sets of the form {(x, y) ∈ X ×X : d(x, y) < 2−n}).
Then we say that (X, d) is half-complete if the quasi-uniform space (X,U(d)) is
half-complete. If (X, d) is a quasi-metric space, we say that (Y, q) is a quasi-
metric half-completion of (X, d) if (Y, q) is a half-complete quasi-metric space
such that (X, d) is isometric to a T (q)-dense subspace of (Y, q). It follows from
[SR, Lemma 1] that a quasi-pseudometric space is d-sequentially complete if and
only if it is half-complete. As an immediate consequence of this result we have
the following

Lemma 1. A quasi-metric space has a quasi-metric d-sequential completion if
and only if it has a quasi-metric half-completion.

We conclude this section with some notions of the theory of quasi-uniform
spaces which will be used later on.

Let (X,U) be a quasi-uniform space and let F be a filter on X . Then F is
called:

(i) U-stable if for each U ∈ U ,
⋂

{U(F ) : F ∈ F} ∈ F ([Cs]);
(ii) D-Cauchy if there is a filter G on X such that (G,F) → 0, where
(G,F) → 0 if for each U ∈ U there exist F ∈ F and G ∈ G such
that G × F ⊆ U ([Do], [FH2]).

A quasi-uniform space (X,U) is called co-stable ([DR]) if each D-Cauchy filter
on (X,U−1) is U-stable. A quasi-metric space (X, d) is said to be co-stable if
(X,U(d)) is a co-stable quasi-uniform space.

2. Quasi-metric spaces having a quasi-metric half-completion

Proposition 1. For a quasi-metric space (X, d) the following conditions are
equivalent:

(1) (X, d) has a quasi-metric half-completion;
(2) whenever 〈xn〉 is a Cauchy sequence in the metric space (X, d∗) which is

T (d−1)-convergent to a point x ∈ X , then 〈xn〉 is T (d)-convergent to x;
(3) the quasi-uniform space (X,U(d)) has a T1 quasi-uniform half-completion.

Proof: (1)⇒ (3). Obvious.
(2) ⇒ (1). In order to prove this implication we shall use a construction due

to Künzi [Kü2, Lemma 7]:
Let A = {x : x is a non T (d)-convergent Cauchy sequence in (X, d∗)} and let

Y = X ∪ A. Given x = 〈xn〉 ∈ A there is a strictly increasing sequence 〈j(n)〉 of
natural numbers such that for each n ∈ N, d(xk , xm) < 2

−n whenever k, m ≥ j(n).
Put s(x) = xj(1), S1(x) = Bd(xj(1), 2

−1) and Sn(x) = {xk : k ≥ j(n)} for n > 1.



752 E.Alemany, S. Romaguera

Now define for each x, y ∈ Y ,

q(x, y) =



























d(x, y) if x, y ∈ X,

d(s(x), s(y)) + 2 if x, y ∈ A, x 6= y,

0 if x, y ∈ A, x = y,

d(x, s(y)) + 3 if x ∈ X, y ∈ A,

inf{max{d(Sn(x), y), 1/n} : n ∈ N} if x ∈ A, y ∈ X.

According to [Kü2, Lemma 7], q is a quasi-pseudometric on Y such that
Bq(x, 2−m) = (

⋃

{Bd(a, 2−m) : a ∈ S2m+1(x)}) ∪ {x} for all x ∈ A and all
m ∈ N. Therefore X is dense in (Y, T (q)). Now we show that q is actually a
quasi-metric on Y : if q(x, y) = 0 for x ∈ A and y ∈ X , then d(am, y) → 0 for
some subsequence 〈am〉 of the Cauchy sequence in (X, d∗), x = 〈xn〉. Hence,
d(y, am)→ 0, a contradiction since x ∈ A.
We finally prove that (Y, q) is q-sequentially complete. Let 〈yn〉 be a Cauchy

sequence in (Y, q∗). Then we can assume without loss of generality that yn ∈ X
for all n ∈ N because q(x, y) ≥ 2 for x, y ∈ A, x 6= y. Thus 〈yn〉 is a Cauchy
sequence in (X, d∗). Suppose that y = 〈yn〉 ∈ A. Since S2m+1(y) ⊆ Bq(y, 2−m)
for all m ∈ N, we conclude that q(y, yn)→ 0.

(3) ⇒ (2). This implication is an immediate consequence of [Ro3, Proposi-
tion 7] which establishes that a T1 quasi-uniform space (X,U) has a T1 quasi-
uniform half-completion if and only if whenever F is a Cauchy filter on the uni-
form space (X,U∗) which is T (U−1)-convergent to a point x ∈ X , then F is
T (U)-convergent to x. �

Corollary 1. Each θ-refinable co-stable quasi-metric space (X, d) admitting a
quasi-metric half-completion is strongly quasi-metrizable.

Proof: By Proposition 1, [Ro3, Corollary 7.2] and [Ro2, Corollary 2], (X, d)
has a quasi-metric left K-sequential completion and, thus, (X, T (d)) s a strongly
quasi-metrizable space ([Ro1, Corollary 5.1]). �

Corollary 2. Each paracompact co-stable quasi-metric space (X, d) admitting a
quasi-metric half-completion is metrizable.

Proof: By Corollary 1, (X, T (d)) is strongly quasi-metrizable and, hence, de-
velopable. The result follows from the famous Bing’s metrization theorem that
every paracompact developable space is metrizable. �

Example 1. Let X = R and let d be the quasi-metric defined on X by d(x, y) =
min{1, |x − y|} if x is rational, d(x, y) = 1 if x 6= y and x is irrational, and
d(x, x) = 0. Then T (d) is the Michael line on R. It is well known that (R, T (d))
is a paracompact nonmetrizable space and it is shown in [DR] that (R, d) is a co-
stable quasi-metric space. It follows from Corollary 2 that (R, d) does not admit
a quasi-metric half-completion. Note, however, that d−1 is a left K-sequentially
complete quasi-metric.
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The notion of a uniformly regular quasi-uniform space plays a crucial role in
the study of symmetry properties and completeness in quasi-uniform spaces (see,
for instance, [De1], [De2], [De3], [FH1], [FH2], [KMRV], etc.). A quasi-uniform
space (X,U) is uniformly regular ([Cs]) provided that for each U ∈ U there is a
V ∈ U such that for all x ∈ X , T (U) cl V (x) ⊆ U(x).
If (X,U) is a uniformly regular quasi-uniform space, then (X, T (U)) is a regular

topological space. The profusion of interesting examples of nonregular topological
spaces suggests the following generalization of uniform regularity:

A quasi-uniform space (X,U) is called uniformly weakly regular if for each
U ∈ U there is a V ∈ U such that for all x ∈ X , T (U) cl V ∗(x) ⊆ U(x). (As usual
V ∗ denotes the entourage of U∗, V ∩ V −1.)

A quasi-pseudometric space (X, d) is called uniformly weakly regular if the
quasi-uniform space (X,U(d)) is uniformly weakly regular.

It is easily seen that if (X,U) is a uniformly weakly regular quasi-uniform space,
then (X, T (U)) is a R0 topological space.

Example 2. Let X = N and let d be the quasi-metric defined on X by d(n, m) =
1/m if n < m, d(n, m) = 1 if n > m and d(n, n) = 0 for all n ∈ N. Then T (d)
is the cofinite topology on N which is not regular. However (N, d) is uniformly
weakly regular. (Note that T (d−1) is the discrete topology on N and, hence,
(N,U(d−1)) is uniformly regular.)

In [De1] Deák proved that each uniformly regular half-complete quasi-uniform
space is bicomplete. Our next proposition generalizes this result to uniformly
weakly regular spaces.

Proposition 2. Each uniformly weakly regular half-complete quasi-uniform

space is bicomplete.

Proof: Let (X,U) be a uniformly weakly regular half-complete quasi-uniform
space. Let F be a Cauchy filter on the uniform space (X,U∗). Then F is T (U)-
convergent to a point x ∈ X . We shall show that F is T (U∗)-convergent to x. To
this end, it suffices to prove that for each U ∈ U , U−1(x) ∈ F . Given U ∈ U there
is a V ∈ U such that T (U) cl V ∗(y) ⊆ U(y) for all y ∈ X . On the other hand,
there is F ∈ F such that F × F ⊆ V , so that V ∗(y) ∈ F for all y ∈ F . Then
W (x) ∩ V ∗(y) 6= ∅ for all W ∈ U and all y ∈ F . Thus x ∈ T (U) cl V ∗(y) ⊆ U(y)
for all y ∈ F . We conclude that F ⊆ U−1(x). This completes the proof. �

Proposition 3. Let (X,U) be a T1 quasi-uniform space such that (X,U−1) is
uniformly weakly regular. Then (X,U) has a T1 quasi-uniform half-completion.

Proof: Let F be a Cauchy filter on (X,U∗) which is T (U−1)-convergent to
a point x ∈ X . By [Ro3, Proposition 7] cited above, it suffices to show that
F is T (U)-convergent to x. Let u ∈ U . Then there is a V ∈ U such that
T (U−1) cl V ∗(y) ⊆ U−1(y) for all y ∈ X . On the other hand, there is F ∈ F such
that V ∗(y) ∈ F for all y ∈ F . Then W−1(x) ∩ V ∗(y) 6= ∅ for all W ∈ U and all
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y ∈ F . Thus x ∈ T (U−1) cl V ∗(y) ⊆ U−1(y). We have shown that F ⊆ U(x).
Consequently, F is T (U)-convergent to x. �

From Propositions 1 and 3 and Corollary 2 we immediately deduce the following

Corollary 3. Each paracompact co-stable quasi-metric space whose conjugate is

uniformly weakly regular is metrizable.

Remark 1. Consider the quasi-metric space (R, d) of Example 1. It follows from
Corollary 3 that the conjugate quasi-metric space (R, d−1) is not uniformly weakly
regular. On the other hand, it is well known that (R, d) is uniformly regular.

3. Quasi-metric spaces having a quasi-metric bicompletion

Proposition 4. The bicompletion of a quasi-metric space (X, d) is quasi-metric
if and only if whenever 〈xn〉 and 〈yn〉 are Cauchy sequences in (X, d∗) such that
d(xn, yn)→ 0, then d(yn, xn)→ 0.

Proof: Suppose that the bicompletion (Y, q) of (X, d) is quasi-metric and let
〈xn〉 and 〈yn〉 be Cauchy sequences in (X, d∗) such that d(xn, yn) → 0. Then
there exist a, b ∈ Y such that q∗(a, xn) → 0 and q∗(b, yn) → 0. By the triangle
inequality, q(a, b) = 0. Thus a = b. Since d(yn, xn) ≤ q(yn, a)+q(a, xn), it follows
that d(yn, xn)→ 0.
Conversely, let Y be the set of Cauchy sequences in (X, d∗). For each x = 〈xn〉

and y = 〈yn〉 in Y , put q(x, y) = limn d(xn, yn). Then q is a bicomplete quasi-
pseudometric on Y such that X is T (q∗)-dense in Y (see [Sa, Theorem 2.3, p. 45]).
Now let R = {(x, y) ∈ Y × Y : q∗(x, y) = 0}. Then R is an equivalence relation.
For each pair [x], [y], in the quotient Y/R, define p([x], [y]) = q(x, y). Then p is a
bicomplete quasi-pseudometric on Y/R such that p∗([x], [y]) = 0⇔ [x] = [y] (see
[Sa, Proposition 1.3, p. 42]). Clearly, the map e : X → Y/R defined by e(x) = [x]
for all x ∈ X , is an isometry from (X, d) into (Y/R, p) and e(X) is T (p∗)-dense
in Y/R. Hence, (Y/R, p) is a T0 bicompletion of (X, d). We finally show that
(Y/R, p) is a quasi-metric space. In fact, if p([x], [y]) = 0, then q(x, y) = 0, so
that d(xn, yn) → 0, where x = 〈xn〉 and y = 〈yn〉 are two Cauchy sequences
in (X, d∗). We conclude that d(yn, xn) → 0 and, thus, q(y, x) = 0. Therefore
p∗([x], [y]) = 0, which shows that [x] = [y]. �

The next example deals with some natural conjectures that one may consider
in the light of the obtained results.

Example 3. Let X = {1/n : n ∈ N} and let d be the quasi-metric defined on X
by d(1/(2n+1), 1/2m) = 1 for all n, m ∈ N, and d(x, y) = |x−y| otherwise. Then
both (X, d) and (X, d−1) have a quasi-metric half-completion but (X, d) has no
quasi-metric bicompletion as Proposition 4 shows. Note also that both T (d) and
T (d−1) are the discrete topology on X , so both U(d) and U(d−1) are uniformly
regular.
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Proposition 5. The bicompletion of each quasi-metric compatible with a quasi-

metrizable space (X, T ) is quasi-metric if and only if X is a finite set.

Proof: Suppose that (X, T ) is an infinite quasi-metrizable space such that the
bicompletion of each compatible quasi-metric is quasi-metric. By [SR, Theorem 2]
(X, T ) is a compact space, so that it is second countable. Therefore it admits a
compatible totally bounded quasi-metric d ([FL, Proposition 2.7]). Let 〈xn〉 be a
sequence of distinct points of X . Then it has a subsequence 〈yn〉 which is Cauchy
in (X, d∗). Since (X, T ) is compact, 〈yn〉 has a cluster point a. Let e be the
quasi-metric defined on X by e(x, a) = 1 if x 6= a and e(x, y) = min{1, d(x, y)}
otherwise. Clearly T (e) = T . Let (Y, q) be the bicompletion of (X, e). Then 〈yn〉
is a Cauchy sequence in (Y, q∗), so that q∗(y, yn) → 0 for some y ∈ Y . Since
q(a, yn) → 0, a = y because q is a quasi-metric. Therefore e∗(a, yn) → 0 which
contradicts that e(x, a) = 1 for x 6= a. Consequently X is a finite set. The
converse follows from [KRS, Corollary of Theorem 2]. �
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