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OCA and towers in P(N)/fin

Ilijas Farah*

Abstract. We shall show that Open Coloring Axiom has different influence on the algebra
P(N)/fin than on N

N/fin. The tool used to accomplish this is forcing with a Suslin
tree.
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The Open Coloring Axiom is a natural Ramseyan statement about sets of reals
which can also be considered as a natural two-dimensional version of the classical
Perfect Set Property of sets of reals. It states that if X is a set of reals and
[X ]2 = K0 ∪ K1 is a partition such that K0 is open, then one of the following
applies:

(1) there is an uncountable K0-homogeneous subset of X , or
(2) X is the union of countably many K1-homogeneous sets (i.e. it is σ-K1-
homogeneous).

It is a quite useful principle with strong influence on structures in close relationship
with the set of reals, such as 〈NN,≤∗〉 or the algebra P(N)/fin (see [7], [9]).
Deeper applications of OCA frequently need some additional help of Martin’s
Axiom which is its natural context because both of the axioms can be considered
as parts of the stronger Proper Forcing Axiom. The purpose of this note is to
explain why some parts of MA are needed at least in some of the well-known
applications. We shall choose one of the most famous consistency results about
the real numbers: the Baumgartner’s statement BA which says that all ℵ1-dense
sets of reals are isomorphic (a set of reals X is ℵ1-dense iff for all x < y in X the
interval (x, y)∩X has size ℵ1). This is a natural generalization of Cantor’s theorem
that all ℵ0-dense sets of reals are isomorphic. Clearly, BA is at least formally
stronger than the statement that every set of reals of size ℵ1 is isomorphically
embeddable into any other uncountable set of reals. We can weaken this still
further and say (A is σ-embeddable into B if there are countably many partial
increasing maps from A into B such that their domains cover A):

(*) If A and B are sets of reals of size ℵ1 then A is σ-embeddable into B.

*Partially supported by Ontario Graduate Scholarship.
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In [7, §8] it is proved that (*) plus a little bit of MA implies BA. The form
of MA that is needed can be stated as saying that t > ω1, namely that every
tower of height ω1 in 〈[N]ω ,⊆∗〉 can be extended (or equivalently, that MAℵ1 for
σ-centered posets is true — see [5]). This leads to following natural questions
some of which are answered here:

(a) What if we use OCA instead of (*)? Or, does OCA imply (*)?
(b) What about removing t > ω1, even if (*) is supported by OCA?
(c) Does BA or OCA imply t > ω1?

[Note that both OCA and BA have a strong influence on b, the corresponding

cardinal of the structure 〈NN,≤∗〉 (see [7, §§0,1,7,8]). For another explanation of
difference between t and b, see [8, Example 1].] We give a negative answer to (b)
and to OCA-part of (c) in Theorem 1 below. The question whether OCA implies
BA was independently from us asked by M. Weese [10]. It should be remarked
that MA alone does not imply BA (see [1]).

Theorem 1. There is a forcing extension of L in which OCA and (*) are true,
t = ω1 and BA fails.

Consider the following strengthening of (*):

(**) For every uncountable family F of (nonempty) countable pairwise disjoint
sets of reals and for every set of reals A of size ℵ1 there are h:A → F and
partial increasing maps fn:A →

⋃

F such that {fn(a) |n ∈ N, a ∈ dom fn} =
h(a).

Proof of Theorem 1: It will obviously suffice to prove the following lemmas.
�

Lemma 1. Forcing with a complete ccc Boolean algebra which does not add
reals (i.e. a Suslin algebra) preserves OCA and (**).

Lemma 2. Forcing with a Suslin tree makes t = ω1.

We have discovered Lemma 2 while reading Dordal’s paper [4] which uses
similar arguments. A. Dow has pointed out that Lemma 2 was known to Booth.

Lemma 3. Forcing with a Suslin tree adds to the universe an ℵ1-dense set of
reals B such that
(a) no uncountable ground-model set of reals can be mapped to B by a continuous
1–1 map,
(b) there is no continuous 1–1 map from B into itself other than the identity.
So in particular BA fails in a forcing extension by a Suslin tree.

Lemma 4. There is a forcing extension of L in which OCA and (**) are true
and Suslin Hypothesis fails.

Proof of Lemma 1: Suppose that OCA is true, and that S is a Suslin algebra.
Let Ẋ be an S-name for a set of reals, and let [Ẋ ]2 = K0 ∪ K1 be an open
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partition. [Since S is not adding reals, assuming that K0 is in the ground model

is not a loss of generality. Notice also that Ẋ is a set of ground-model reals.] All

we have to prove is that if Ẋ is forced to be non-σ-K1-homogeneous, then the set
of all p ∈ S which force that there is an uncountable 0-homogeneous subset of Ẋ
is dense in S.
Work in the ground model: fix q ∈ S, let Xq be the set of all possibilities below

q for Ẋ , i.e. the set {x ∈ R | p  x̌ ∈ Ẋ, for some p ≤ q}. Since q forces that

Xq includes Ẋ it is also non-σ-1-homogeneous, and therefore (by OCA) it has an
uncountable 0-homogeneous subset Y = {yξ | ξ < ω1}. Let pξ ≤ q be a condition

which forces that yξ is in Ẋ , for ξ < ω1. By ccc-ness of S we can pick p ≤ q which

forces that there are uncountably many pξ ’s in a generic filter Ġ, so p forces that

Y ∩ Ẋ is an uncountable 0-homogeneous subset of Ẋ.
To see that (**) is preserved, first observe that it is enough to check the case

when A is a ground-model set of reals and Ḟ = {Ḟα |α < ω1} is a S-name for a

family as in (**). Let F̂α be the set of all possibilities for Ḟα, set {x ∈ R | some

p ∈ S forces that x ∈ Ḟα}, and let F̂ = {F̂α |α < ω1}. By going to a subset

we can assume that F̂α is a family of pairwise disjoint sets, so fix h and {fn} as
in (**). Go to a forcing extension by S, and for a ∈ A define

h′(a) = Ḟα, if h(a) = F̂α,

f ′
n(a) =

{

fn(a), if fn(a) ∈ h′(a),

undefined, otherwise.

Then h and {f ′
n} witness (**). �

Remark. Similarly, forcing with S preserves OCA[ARS] and SOCA (i.e. versions

of Open Coloring Axiom defined in [1]): In the case of OCA[ARS], just notice that

the set of possibilities for Ẋ is σ-homogeneous, and therefore X is such as well.
For SOCA, the proof is analogous to the case when Xq is not σ-1-homogeneous in
the proof of OCA. Note that in these proofs the use of ccc-ness of S was necessary,
because a natural poset for collapsing c to ℵ1 does not add reals, while all of the
above axioms contradict CH.

Proof of Lemma 2: Let T ⊆ P(N)/fin be such that 〈T,⊇∗〉 is a Suslin tree
with the property that incomparable nodes are almost disjoint. Work in a forcing
extension by T : let B be a cofinal branch of T . Then it is a decreasing ω1-tower in
[N]ω ; we claim that no infinite a ⊆ ω extends it. Suppose that it is not true and fix
such a. Then a is in the ground model, and the ground-model set {s ∈ T | s ⊇∗ a}
is, by (2), equal to B — a contradiction. �

Proof of Lemma 3: Assume that T is a set of reals, and that <T is a Suslin
tree ordering on it. Since for every set of reals {xξ | ξ < ω1} in its bijective
enumeration there is an α such that {xξ |α ≤ ξ < ω1} is ℵ1-dense, we can assume

that T forces that the generic branch Ḃ is an ℵ1-dense set of reals. We shall prove
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that Ḃ has the required properties. Notice that if Y ⊆ Ḃ is uncountable, then Ḃ
can be defined as the downward closure of Y in T , so in particular Y is not in the
ground model.
(a) Suppose that Ż is a T -name for a ground-model set of reals and that ḟ is a T -

name for a continuous real function mapping Ż into B with an uncountable range.
Work in V T : we can extend f to a Borel function f̄ whose domain includes Ż.
Since T is not adding reals, f̄ is coded by a ground-model real. But then f̄ ′′Z is
also in the ground model, and so is Ḃ — a contradiction.
(b) Work in the extension: Suppose that f : Ḃ → Ḃ is a continuous 1–1 map,

different from the identity. Again f = f̄ ↾ Ḃ for some ground-model function f̄ .
Since Ḃ is ℵ1-dense, f moves uncountably many points. We claim that t <T f(t)

for uncountably many t ∈ Ḃ: let Ḃ = {tξ | ξ < ω1} be an increasing enumeration

of Ḃ, and let f̂ :ω1 → ω1 be the function defined by

f̂(ξ) = η iff f(tξ) = tη.

Then if α is an ordinal such that f̂ ′′α ⊆ α, f̂−1α ⊆ α and β > α is the least

such that f̂(β) 6= β, we indeed have tβ <T f(tβ), so there are uncountably many

such β. Let s be a T -condition which decides this fact and f̄ . Then the set Bs

of possibilities for Ḃ below s (i.e. the cone {t ∈ T | s <T t}) is included in the
domain of f̄ . Notice that f̄(t) and t are ≤T -compatible for all t in Bs. By our
choice of S, the set

{t ∈ T [s] | t <T f̄(t)}

is dense in T below s, so the set

{r ∈ T | for some t <T r nodes f̄(t) is incomparable with r}

is dense as well. But Ḃ avoids this set — otherwise f ′′Ḃ would not be a subset
of Ḃ. This contradicts to the assumed genericity of Ḃ. �

Proof of Lemma 4: By [X ]<ω
K0
we denote a poset of all finite subsets of X

which are 0-homogeneous. Assume that [Y ]2 = K0 ∪ K1 is an open partition,
fix a bijective enumeration Y = {yξ | ξ < ω1}, let Y(·,α) = {yξ | ξ < α} and

Y[α,·) = {yξ |α ≤ ξ}, and consider the following property (for the definition of the

oscillation mapping ω∗
f,K0

see [7, p. 39]) of the set Y :

(†) Y is not σ-K1-homogeneous and for every countable D ⊆ Y and f :Dn → Y
for n ∈ N there are at most countably many α < ω1 such that ω

∗
f,K0
(~x)∩Y[α,·)

is nonempty and σ-K1-homogeneous for some ~x ∈ Y n
(·,α).

In [7, Theorem 4.4] the following was proved:
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Proposition 1 (CH). (a) If [X ]2 = K0 ∪ K1 is an open partition and X is not
σ-K1-homogeneous then there is an uncountable Y ⊆ X with the property (†).
(b) If Y has the property (†), then the poset [Y ]<ω

K0
is ccc. �

For A,F as in (**) and h:A →
⋃

F let Ph be the poset of all finite strictly
increasing functions p from A into

⋃

F such that p(a) ∈ h(a) for all a ∈ dom(p).
Then the poset P<ω

h of all finite powers of Ph generically adds sequence {fn} as
in (**), so it remains only to assure that this poset is ccc. Fix a 1–1 enumeration
A = {aα |α < ω1} and consider the following property of the function h:

(††) For every Gδ subset G of R
n (for some n ∈ N) and a continuous g:G → R

there is a countable ordinal α such that g′′An
[α,·) is disjoint from A[α,·).

Proposition 2 (CH). (a) For all A,F as in (**) there is a mapping h:A → F
such that the poset Ph has the property (††).

(b) If h has the property (††), then the poset P<ω
h is ccc.

Proof: This proof is essentially the same as [7, Theorem 4.2], so we will just
outline the construction and refer the reader there if he or she wants more details.
Let gξ (ξ < ω1) be the enumeration of all continuous functions as in (††). We
inductively define h(aα) for all α. At the αth step of our construction consider a
countable set

{gξ(pˆxα) | ξ < α and p is a finite sequence in {aη, h(aη) | η < α}}

and pick h(aα) ∈ F to be disjoint from it. Then h is as required. �

We always assume that poset [X ]<ω
K0
has the property (†) and that poset Ph

has the property (††). In the universe which satisfies combinatorial principles
CH and ♦ω2 one can define a forcing notion P such that OCA and (**) are true
in the extension by P (this construction which uses ♦ω2 as a refection device is
described in [6]). Poset P is a finite support iteration of posets [X ]<ω

K0
and P<ω

h .

Claim. (a) Forcing with the poset [X ]<ω
K0
does not destroy Suslin trees.

(b) Forcing with the poset P<ω
h does not destroy Suslin trees.

(c) Forcing with a finite support iteration P of posets [X ]<ω
K0
and P<ω

h does

not destroy Suslin trees.

Proof: (a) Let T be a Suslin tree. Since “[X ]<ω
K0
destroys T ” means “[X ]<ω

K0
forces that 〈T, <T 〉 is not ccc”, it is enough to prove that forcing with T cannot
destroy ccc-ness of [X ]<ω

K0
. But all objects mentioned in (†) are coded by reals

(note that everyK1-homogeneous set is included in a closedK1-homogeneous set)
and a fixed enumeration of X , so forcing with T does not change the situation,
and therefore the proof that [X ]<ω

K0
is ccc is the same in the extension by T as it

is in the ground model.

(b) Similarly, statement (††) mentions only reals and a fixed enumeration of A.
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(c) This statement is equivalent to “Forcing with a Suslin tree T does not
destroy ccc-ness of P”, and it follows from (a), (b), and the fact that a finite
support iteration of ccc posets is ccc, applied in the extension by T . �

So if we perform a natural forcing of OCA and (**), then there is a Suslin tree
in an extension.

Remark. It should be noted that we can get a model as in Theorem 1 in which
there are 2ℵ1 = ℵ2 many pairwise nonisomorphic ℵ1-dense sets of reals. To get
this, fix a Suslin algebra S of size ℵ2 in the ground model. (By a result of Jensen,
the existence of such object follows from combinatorial principles ♦ω1 and �ω1
which are true in L.) The properties of S that we need are (see [3]):

(1) every Suslin algebra has a regular subalgebra which is isomorphic to a
regular open algebra of some Suslin tree,

(1) every nontrivial quotient of a Suslin algebra is a Suslin algebra, so
(2) there is an increasing sequence {Sξ | ξ < ω2} of regular subalgebras of S
such that the quotient Sξ+1/Sξ is isomorphic to a regular open algebra of
a Suslin tree for all ξ < ω2.

Observe that the proof of Lemma 4 also shows that ccc-ness of S is preserved after
forcing OCA and (**). Also, observe that it is impossible to make nonisomorphic
sets of reals isomorphic without adding reals. So forcing with S adds to universe
a sequence of ℵ2 many nonisomorphic ℵ1-dense sets of reals (corresponding to
Suslin trees as in (3)), and it does not destroy OCA and (**).
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