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Special almost P-spaces

Alessandro Fedeli

Abstract. Motivated by some examples, we introduce the concept of special almost P-
space and show, using the reflection principle, that for every space X of this kind the
inequality “|X| ≤ ψc(X)t(X)” holds.
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Classification: 54A25, 54G99

An almost P-space is a space in which every non-empty Gδ-set has non-empty
interior (see e.g. [7]). A subset S of a space X is called d-closed if disjoint closed
subsets of S have disjoint closures in X . Obviously every closed subset of a space
is d-closed. Moreover observe that:

(i) Every d-closed subset S of a normal space X is C*-embedded in X : let C1, C2
be two completely separated sets in S, then C1 and C2 have disjoint closures in S.
Since S is d-closed in X it follows that clX(C1) ∩ clX(C2) = ∅. By the normality
of X it follows that C1 and C2 are completely separated in X . Therefore (by the
Urysohn’s extension theorem) S is C*-embedded in X .

(ii) A C*-embedded subset in a normal space may fail to be d-closed. In fact
every d-closed subset of a normal space is normal.

(iii) Every normal C*-embedded subset S in a space X is d-closed: let C1 and C2
be two closed disjoint subsets of S, since S is normal it follows that C1 and C2
are completely separated in S. Take a continuous function f : S → I such that
f(C1) ⊂ {0} and f(C2) ⊂ {1}. S is C*-embedded in X so there is a continuous
extension F : X → I of f , therefore C1 and C2 have disjoint closures in X and S
is d-closed in X .
The purpose of this paper is to show that a good behaviour of the d-closed

subsets of an almost P-space X allows us to obtain a bound on the cardinality
of X in terms of t(X) and ψc(X), where t(X) and ψc(X) denote respectively the
tightness and the closed pseudocharacter of X (we refer the reader to [3], [5], [6]
for notations and terminology not explicitly given).
To this aim let us consider the following examples.

(1) The one-point compactification of an uncountable discrete space is an almost
P-space in which every d-closed subset is compact.

(2) The one-point Lindelöfization of an uncountable discrete space is an almost
P-space (even a P-space) in which every d-closed subset is Lindelöf.
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(3) It is well known that under CH a subspace S of βω is C*-embedded in βω
if and only if it is weakly Lindelöf (i.e. every open cover of S has a countable
subfamily whose union is dense, see e.g. Theorem 1.5.3 in [8]). Therefore βω \ω is
an almost P-space such that, under CH, every d-closed subset is weakly Lindelöf.

These common aspects of the above examples led us to the following

Definition 1. A special almost P-spaceX is a Hausdorff almost P-space in which
every d-closed subset S is a WL-set in X (i.e. for every open family U in X such

that S ⊂
⋃

U there exists a countable family V ⊂ U such that S ⊂
⋃
V).

Remark 2. Obviously every weakly Lindelöf subspace of a space X is a WL-set
in X . The converse is not true. Let us consider the Katětov H-closed extension
kω of the discrete space ω, then kω\ω is a discrete WL-set in kω of cardinality 2c.

To show our result on the cardinality of special almost P-spaces we need to
review some facts on “elementary submodels” (our approach is that of [10], see
also [9], [4] and [1], [2]).

Proposition 3 (The reflection principle). Let φ(x, v0, . . . , vn) be a formula of
set-theory with free variables x and the v′is. If A is any set, then there is a set
M ⊃ A such that |M| ≤ |A|+ ω and, whenever there are m0, . . . ,mn ∈ M such

that there is some x such that φ(x,m0, . . . ,mn), then there is some x ∈ M such

that φ(x,m0, . . . ,mn) (we say that M reflects the formula ∃x φ). We can also
find a singleM which works for finitely many formulas simultaneously.

Proposition 4. Let κ, λ be infinite cardinal numbers. If A is a set such that
|A| ≤ λκ and φ is a formula of set-theory, then there is a set M such that

A ⊂ M, |M| ≤ λκ,M reflects ∃x φ and moreoverM is closed under κ-sequences
(i.e. [M]≤κ ⊂ M).

Proposition 5. Let κ be an infinite cardinal number. Then there are two for-
mulas so that, ifM satisfies Proposition 3 for these two formulas and a set A and
if κ ⊂ A, κ ∈ A, E ∈ M and |E| ≤ κ, then E ⊂ M.

Theorem 6. If X is a special almost P-space, then |X | ≤ ψc(X)
t(X).

Proof: Let κ = t(X), λ = ψc(X) and let τ be the topology on X . For every
x ∈ X let Bx be a collection of open neighbourhoods of x with |Bx| ≤ λ such that⋂
{B : B ∈ Bx} = {x}, and let f : X → P(τ) be the map defined by f(x) = Bx
for every x ∈ X .
Let A = λκ ∪ {X, τ, λκ, f} and apply Propositions 3–5 to obtain a setM such

that M ⊃ A, |M| = λκ and which reflects enough formulas to carry out the
argument at hand. More precisely we ask that M reflects enough formulas so
that the following conditions are satisfied:

(i)M is closed under κ-sequences;

(ii) Bx ∈ M for every x ∈ X ∩M;

(iii) if B ⊂ X and B ∈ M, then B ∈ M;
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(iv) if A ∈ M, then
⋃
A ∈ M;

(v) if B is a subset of X such that X ∩M ⊂ B and B ∈ M, then X = B;

(vi) if E ∈ M and |E| ≤ λκ, then E ⊂ M;

(vii) if A,B ∈ M, then A ∩B ∈ M;

(viii) if A is non-empty and A ∈ M, then A ∩M 6= ∅.

For example if φ(x, v0, v1) is the formula (x ∈ v0 ∧ x /∈ v1) and M reflects
the formula ∃x φ, then (v) is satisfied. In fact let B be a subset of X such that
B ∈ M. Set m0 = X and m1 = B, if B 6= X (i.e. if there is some x such that
φ(x,m0,m1)), then there is some x ∈ M such that φ(x,m0,m1), i.e. X∩M 6⊂ B.
Observe that by (ii) and (vi) By ⊂ M for every y ∈ X ∩M.
First we check that X ∩M is d-closed in X . Let F1, F2 be two closed disjoint

subsets of X ∩M, we claim that they have disjoint closures in X . Suppose there
is a point x ∈ F 1 ∩ F 2, since t(X) = κ it follows that there are A ∈ [F1]

≤κ and
B ∈ [F2]

≤κ such that x ∈ A ∩ B. Since A,B ∈ M (A,B ⊂ M andM is closed
under κ-sequences) it follows that A ∩ B ∈ M (by (iii) and (vii)). Therefore by
(viii) there is some x ∈ A ∩ B ∩M, so x ∈ clX∩M(A) ∩ clX∩M(B) ⊂ F1 ∩ F2,
which is a contradiction.
Now let us show that X ⊂ M (and hence |X | ≤ ψc(X)

t(X)). Suppose not and
take a point x ∈ X \ M. For every y ∈ X ∩M let By ∈ By such that x /∈ By
and observe that By ∈ M. Since X ∩M ⊂

⋃
{By : y ∈ X ∩M} and X ∩M is a

WL-set in X there is some S ∈ [X ∩M]≤ω such that X ∩M ⊂
⋃
y∈S By . Now

set G = Int(
⋂
{X \By : y ∈ S}), since

⋂
{X \By : y ∈ S} is a non-empty Gδ-set

and X is an almost P-space it follows that G 6= ∅. Moreover G ∩
⋃
y∈S By = ∅.

Since {By : y ∈ S} ⊂ M and M is closed under κ-sequences, it follows that
{By : y ∈ S} ∈ M. Hence, by (iv),

⋃
{By : y ∈ S} ∈ M.

Now observe that, by (iii),
⋃
y∈S By ∈ M and therefore, by (v),

⋃
y∈S By = X ,

a contradiction. �

Remark 7. Obviously every special almost P-space is weakly Lindelöf. Moreover

it is well-known that |X | ≤ 2χ(X) for every weakly Lindelöf T4-space X (see [5,
Theorem 4.13]), so it is natural to compare this estimation with the one given in
Theorem 6. To this end let us consider the one-point compactification X of the

discrete space of cardinality 2ℵ0 . It is easily seen that |X | = ψc(X)t(X) < 2χ(X).
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