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Some properties of short exact

sequences of locally convex Riesz spaces

Stojan Radenović, Zoran Kadelburg

Abstract. We investigate the stability of some properties of locally convex Riesz spaces
in connection with subspaces and quotients and also the corresponding three-space-
problems. We show that in the richer structure there are more positive answers than in

the category of locally convex spaces.
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0. Introduction

In the theory of topological vector spaces one of the widely considered questions
is the question of the stability of certain properties in connection with subspaces
and quotients. In a certain sense the inverse problem is the so called “three-space-
problem”: if in a short exact sequence 0 → F → E → E/F → 0 of topological
vector (particularly, locally convex) spaces the terms F and E/F possess a certain
property (P), does the space E have to possess the same property? The problem
was solved for many properties — see e.g. [2], [3], [4], [12]. The mentioned ques-
tions can be considered in the category of ordered topological vector spaces, too,
and, as we shall see, in the richer structure there are positive answers in more
cases than in the category of topological vector spaces.
In this article we shall study the problem of stability in connection with sub-

spaces and quotients, as well as the three-space-problem for certain properties of
locally convex Riesz spaces (abbrev. lcRs), i.e. locally convex lattices. For ter-
minology in connection with ordered vector spaces we shall follow [7] and [14].
When we speak about the short exact sequence of ordered locally convex spaces

(∗) 0→ (F, C ∩ F, t|F )
j
→ (E, C, t)

q
→ (E/F, C/F, t/F )→ 0,

we shall assume triple exactness, i.e.:

1◦ exactness in the vector sense, i.e. Im(j) = Ker(q);

2◦ topological exactness in the sense that j:F → E is a topological injection,
and q:E → E/F is a topological homomorphism;
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3◦ orders in F and E/F are canonical in connection with the order in E;
that means that we shall assume that F is a closed l-ideal of E such that in the
quotient E/F the cone C/F = q(C) is proper and the order in F is given by the
cone C ∩ F (see [13, Chapter V, Exercise 3]).

1. Dieudonné topology and lifting of order-bounded subsets

A lot of properties in the category of locally convex Riesz spaces are enabled
by the so called Dieudonné topology. Namely, if (E, C, t) is the given (separated)
lcRs , then there exist two new topologies in the space E and in its dual space
E′, denoted as σs(E, E′) and σs(E

′, E), respectively, such that (E, C, σs(E, E′))
and (E′, C′, σs(E

′, E)) are lcRs . σs(E
′, E) is the coarsest solid and locally convex

topology on E′ which is finer than the weak topology σ(E′, E) and σs(E, E′) is
defined similarly. They are the topologies of uniform convergence on the families
of order-bounded subsets of the spaces E and E′, respectively.
It is known ([11]) that each l-ideal F of the space (E, C, σs(E, E′)) always

carries the Dieudonné topology, i.e. σs(E, E′)|F = σs(F, F ′), but the same is not
always true for the quotient ([11, Remark on p. 206]). As far as the three-space-
problem is concerned, we have

Proposition 1.1. If (∗) is a short exact sequence of lcRs and if t|F = σs(F, F ′)
and t/F = σs(E/F, F ◦), then t = σs(E, E′), i.e. the property of “having the
Dieudonné topology” is three-space stable.

Proof: First of all, observe that the topologies σs(E, E′) and t are comparable:
σs(E, E′) ≤ t. Hence, σs(E, E′)|F ≤ t|F = σs(F, F ′). As σs(F, F ′) is the
coarsest locally solid topology which is finer than σ(F, F ′), we have σs(F, F ′) ≤
σs(E, E′)|F , too, and so σs(E, E′)|F = t|F .
On the other hand, from σs(E, E′) ≤ t it follows that σs(E, E′)/F ≤ t/F =

σs(E/F, F ◦). Since we always have σs(E/F, F ◦) ≤ σs(E, E′)/F ([11]), it follows
that σs(E, E′)/F = t/F . According to the final observation in the proof of
Proposition 2.11 of [12], we obtain that σs(E, E′) = t. �

The previous proposition suggests the following question: if (∗) is a short exact
sequence of locally-o-convex Riesz spaces ([14, p. 155]), is the sequence

0→ (F, C ∩ F, (t|F )s)
j
→ (E, C, ts)

q
→ (E/F, C/F, (t/F )s)→ 0

exact? The answer is negative by [11, p. 206].
For further investigations we shall need the following auxiliary assertion.

Lemma 1.2. Let (F, C ∩ F, t|F ) be a closed l-ideal of an lcRs (E, C, t) and let
(∗) be the corresponding short exact sequence. Then the mapping q lifts order-
bounded subsets with closure, i.e. for each order-bounded subset A in E/F there

exists an order-bounded subset B in E such that q(B) ⊃ A.

Proof: Consider the dual spaces (E′, C′) and ((E/F )′, (C/F )′) = (F ◦, F ◦∩C′),
the corresponding Dieudonné topologies σs(E

′, E) and σs(F
◦, E/F ) and the



Some properties of short exact sequences of lcRs 83

transposed mapping qt:F ◦ → E′. Let us prove that qt: (F ◦, F ◦∩C′, σs(F
◦, E/F ))

→ (E′, C′, σs(E
′, E)) is a topological injection, i.e. that σs(E

′, E)|F ◦ =
σs(F

◦, E/F ). Since the Dieudonné topology σs is the topology of uniform con-
vergence on order-intervals, it will follow that q lifts order-bounded subsets with
closure.
First of all, as the q-image of each order-bounded subset of E is order-bounded

in E/F , we have σs(E
′, E)|F ◦ ≤ σs(F

◦, E/F ). Conversely, σs(F
◦, E/F ) is the

coarsest locally solid topology which is finer than the weak topology σ(F ◦, E/F ).
Also, σ(F ◦, E/F ) = σ(E′, E)|F ◦ and σs(E

′, E)|F ◦ is a locally solid topology on
F ◦ which is finer than σ(F ◦, E/F ). Hence, σs(F

◦, E/F ) ≤ σs(E
′, E)|F ◦ and the

lemma is proved. �

Remark. The previous assertion can also be proved by the given method in some
cases without the assumption of local-convexity of the spaces concerned, pro-
vided sufficiently rich dual spaces exist. A similar remark applies for some of the
propositions that follow, too. We shall keep to the locally convex case.

2. Spaces of order-barrelled type

It is known that the property of “being order-quasibarrelled” is preserved when
passing from an lcRs to its arbitrary quotient, but not always when passing to
its closed l-ideal ([14]), which is analogous to the corresponding situation for the
property of “being quasibarrelled” among locally convex spaces. When the three-
space-problem is concerned, without additional assumptions it has the negative
answer in the category of locally convex spaces ([12]). However, we shall prove

Proposition 2.1. Let (∗) be a short exact sequence of lcRs , where F and E/F
are order-quasibarrelled. Then E is an order-quasibarrelled lcRs , too.

Proof: Let T be a barrel in E which absorbs all order-bounded subsets. Then
T ∩F is a barrel in F which absorbs all order-bounded subsets, since each order-
bounded subset in (F, C ∩ F ) is also an order-bounded set in (E, C). Therefore
there exists a neighbourhood U of the origin in E such that T ⊃ T ∩F ⊃ (3U)∩F .

Now, q(T ∩ U) is a barrel in E/F which absorbs all order-bounded subsets, ac-

cording to Lemma 1.2, and so, by the assumption, q(T ∩ U) is a neighbourhood of
the origin in E/F . Further procedure is the same as in the proof of Proposition 2.4
[12] — for the set V = U ∩ T ∩ U + F one can prove that it is a neighbourhood
of the origin in E and that V ⊂ 2T , and so T is a neighbourhood of the origin
in E, too. �

With obvious changes one can prove

Proposition 2.2. Let (∗) be a short exact sequence of lcRs in which F and E/F
are countably-order-quasibarrelled (COQ [7]). Then E is COQ; in other words,
the property COQ is three-space stable.

When order-(DF) lcRs (i.e. COQ Riesz spaces with a fundamental sequence of
order-bounded subsets) are concerned, it was without detailed proof stated in [7]



84 S.Radenović, Z.Kadelburg

that the property is preserved when passing to an arbitrary quotient. A possible
proof can be as follows: let (E, C, t) be an order-(DF) lcRs and F its closed l-ideal.
Then (E′, C′, σs(E

′, E)) is a Fréchet lcRs , and so (F ◦, C′ ∩F ◦, σs(F
◦, E/F )) is a

metrizable lcRs , since σs(E
′, E)|F ◦ = σs(F

◦, E/F ) (see the proof of Lemma 1.2).
It follows that the quotient (E/F, C/F ), as a Riesz space, possesses a fundamen-
tal sequence of order-bounded subsets. Since the property of “being COQ” is
inherited by quotients, the space (E/F, C/F, t/F ) is order-(DF), too.
When three-space stability of the mentioned property is concerned, again to

the contrary of the non-ordered case ([12]), we have

Proposition 2.3. The property of “being order-(DF)” is three-space stable in
the class of locally convex Riesz spaces.

Proof: Let (∗) be a short exact sequence of lcRs in which F and E/F are
order-(DF) spaces. From the previous proposition it follows that E is COQ.
Further, the spaces (F ′, σs(F

′, F )) and (F ◦, σs(F
◦, E/F )) are Fréchet lcRs and it

should be mentioned that σs(F
′, F ) = β(F ′, F ) (β — the strong topology). Also,

β(F ′, F ) = β(E′, E)/F ◦ ([12, Lemma 4.1]). Now we have

σs(F
′, F ) ≤ σs(E

′, E)/F ◦ ≤ β(E′, E)/F ◦ = β(F ′, F ) = σs(F
′, F ),

and so the following “dual sequence” is exact:

0→ (F ◦, C′ ∩ F ◦, σs(F
◦, E/F ))→

→ (E′, C′, σs(E
′, E))→ (F ′, C′/F ◦, σs(F

′, F ))→ 0.

According to [5, Theorem 6], (E′, C′, σs(E
′, E)) is a metrizable locally convex

space, which means that (E, C, t) has a fundamental sequence of order-bounded
subsets. In that way, it is proved that (E, C, t) is an order-(DF) space. �

We shall finish this section with an investigation of the three-space stability for
the order-bound topology, which will be, for the given lcRs E, denoted by tbE .

Proposition 2.4. Let (∗) be a short exact sequence of lcRs in which t|F = tbF
and t/F = tb(E/F ). Then t = tbE , i.e. the property of “having the order-bound

topology” is three-space stable.

Proof: First of all, t ≤ tbE , and so t|F ≤ tbE |F . Let U ⊂ E be an absolutely
convex set which absorbs all order-bounded subsets of E. Then U ∩F absorbs all
order-bounded subsets of F , and so tbE |F ≤ tbF . Hence, tbF = t|F ≤ tbE |F ≤
tbF , i.e. t|F = tbE |F .
Further, from t ≤ tbE it follows that tb(E/F ) = t/F ≤ tbE/F . On the other

hand, tb(E/F ) is the finest locally convex topology for which all the order-bounded

subsets are bounded, and so tbE/F ≤ tb(E/F ). Thus, tbE/F = tb(E/F ) = t/F .

By the already mentioned final observation in the proof of Proposition 2.11 [12],
t = tbE . �
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3. Distinguished, semi-reflexive and Montel locally convex Riesz

spaces

It is known that in some cases order structure provides more regular behaviour
of “classical” topological vector properties. A reflexive, even semi-reflexive lcRs
is always complete ([13, p. 237] or [14, p. 173]), so that in the class of lcRs there is
no counterpart to Komura’s example of an incomplete Montel space. Properties
of “being bornological” and “being quasibarrelled” are inherited by each l-ideal
(solid subspace) (see [11] and [14, p. 182]), which differs from the locally convex
case without order. We shall use these facts to show that each quotient of a
Montel (resp. Fréchet-Montel) lcRs is again of the same type. This means that
in the class of lcRs there is no counterpart to the famous Köthe-Grothendieck
Fréchet-Montel space whose quotient by some closed subspace is isomorphic to l1.
In other words, Pisier’s method cannot be used to construct counterexamples
for non-three-space stability of certain properties ([2], [3], [4]). Also, using the
same facts we shall derive some conclusions in connection with distinguished and
semi-reflexive lcRs .
It is known that semi-reflexivity in the class of locally convex spaces is inherited

by arbitrary closed subspaces, but not by arbitrary quotients, even in the case of
Fréchet spaces. However, we have

Proposition 3.1. Let E be a Fréchet lcRs and F its closed l-ideal. Then F and
E/F are semi-reflexive if and only if E is semi-reflexive.

Proof: Taking into account Proposition 4.3 of [12], we only have to prove that
semi-reflexivity of E implies semi-reflexivity of E/F .
From the semi-reflexivity of E it follows that E′

τ = E′
β is a barrelled locally con-

vex space, i.e. (E′, C′, β(E′, E)) = (E′, C′, τ(E′, E)) is a barrelled ([7], [14]) and
also bornological lcRs (these two properties are in this case equivalent and equiva-
lent to the property of being quasibarrelled ([6])). Furthermore, F ◦ equipped with
the topology inherited from E′

τ = E′
β is bornological ([8]), and so quasibarrelled

lcRs ([14, p. 182]). Also,

σ(F ◦, E/F ) ≤ σs(F
◦, E/F ) = σs(E

′, E)|F ◦ ≤ τ(E′, E)|F ◦

= β(E′, E)|F ◦ ≤ τ(F ◦, E/F ) ≤ β(F ◦, E/F ),

and so (F ◦, C′ ∩F ◦, τ(F ◦, E/F )) is a bornological (quasibarrelled) lcRs , hence a
barrelled lcRs (because the quotient E/F is Fréchet ([6])). Therefore the space
E/F is semi-reflexive. �

Proposition 3.2. Each quotient E/F of a Montel (Fréchet-Montel) lcRs is Mon-
tel (Fréchet-Montel) lcRs .

Proof: Since E/F is (in both cases) a barrelled lcRs , to show that it is Montel
it is enough to prove that topologies β(F ◦, E/F ) and c(F ◦, E/F ) (topology of
uniform convergence on compact absolutely convex subsets of E/F ) are equal
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on F ◦. Since E′
c = E′

β , (E
′, C′, β(E′, E)) is a barrelled (and so quasibarrelled)

lcRs . According to [14, p. 182], (F ◦, C′ ∩ F ◦, β(E′, E)|F ◦) is a quasibarrelled
lcRs . Furthermore, c(E′, E)|F ◦ ≤ c(F ◦, E/F ) ≤ τ(F ◦, E/F ) ≤ β(F ◦, E/F ) ([9,
22.2]),

c(E′, E)|F ◦ = τ(E′, E)|F ◦ = β(E′, E)|F ◦ ≤ τ(F ◦, E/F ) ≤ β∗(F ◦, E/F )

and

(F ◦, C′ ∩ F ◦, β(E′, E)|F ◦) = (F ◦, C′ ∩ F ◦, τ(F ◦, E/F ))

= (F ◦, C′ ∩ F ◦, β∗(F ◦, E/F ))

and so c(F ◦, E/F ) = β∗(F ◦, E/F ), where β∗ is the topology of uniform conver-
gence on strongly bounded subsets. Since weakly and strongly bounded subsets in
E/F (which is barrelled) are the same, we have that β∗(F ◦, E/F ) = β(F ◦, E/F )
and the proposition is proved. �

Remark. From [14, p. 187] we know that an l-ideal of a barrelled (resp. order-
quasibarrelled) lcRs need not be of the same kind.
When the property of distinguishedness is concerned, let us remark the follow-

ing: In the class of Fréchet locally convex spaces ([3]) there exists a short exact
sequence of even reflexive spaces, with the mapping q which does not lift bounded
sets. On the other hand, if q lifts bounded sets, then the property of “being
distinguished” is three-space stable ([2]). However, in the class of Fréchet lcRs
distinguishedness of the middle term in a short exact sequence (provided F and
E/F are distinguished) is equivalent with the lifting of bounded sets of the map-
ping q. Remark that by a result from [1], for Fréchet locally convex spaces, the
properties of “lifting of bounded sets” and “lifting of bounded sets with closure”
are equivalent.
In contrast to the Fréchet locally convex spaces, in the class of Fréchet lcRs we

can prove

Proposition 3.3. In the class of Fréchet lcRs the property of “being distin-
guished” is inherited by every closed l-ideal and quotient.

Proof: Let E in the sequence (∗) be a Fréchet lcRs . As in the proof of Proposi-
tion 3.1 (or 3.2), (F ◦, C′ ∩F ◦, E′

β |F
◦) is a quasibarrelled lcRs and also barrelled,

i.e. β(E′, E)|F ◦ = β(F ◦, E/F ). It is a consequence of the fact that in the dual
space of an arbitrary barrelled space, a topology which is between the weak and
the strong topology, is barrelled if (and only if) it is quasibarrelled, and in that
case it is equal to the strong topology. Thus, E/F is a distinguished Fréchet lcRs .
From the equality of topologies β(E′, E)|F ◦ and β(F ◦, E/F ) it follows that q lifts
bounded sets (with closure). Furthermore, if the space E is distinguished, then,
on the base of [10, 26.12], the dual sequence

0→ (E/F )′β → E′
β → F ′

β → 0

is exact, and so F ′
β is a barrelled space, i.e. F is distinguished. �
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4. Order-distinguished and order-semi-reflexive spaces

Let (E, C, t) be an lcRs and (E′, C′, σs(E
′, E)) the corresponding dual lcRs

equipped with the Dieudonné topology. The topology σs(E
′, E) is in general

not compatible with the duality 〈E, E′〉. If E is not an l-ideal in E′b, then
(E′, C′, σs(E

′, E))′ 6= E. Therefore we shall say that (E, C, t) is an order-semi-
reflexive lcRs if E′′

|σ| = (E
′, C′, σs(E

′, E))′ = E. Similarly, we say that (E, C, t)

is order-distinguished if each σ(E′′
|σ|, E

′)-bounded set is contained in the closure

of some order-interval from E, i.e.

(∀A ∈ B(E′′
|σ|, E

′))(∃x ∈ C ∩ E)A ⊂ [−x, x]
σ(E′′

|σ|
,E′)

.

Let us state some properties of the introduced classes of spaces.

1◦ If E is an order-distinguished lcRs , then each bounded subset A of E is
order-bounded. In fact,

A = A ∩ E ⊂ [−x, x]
σ(E′′

|σ|
,E′)

∩ E = [−x, x]E = [−x, x].

It follows that each order-distinguished lcRs is distinguished.

2◦ There exist distinguished spaces (even among Banach lattices) which are
not order-distinguished. An example can be the space c0 with canonical order.
Namely, it is known that order-intervals in c0 are compact disks, and so σ(l1, c0) ≤
σs(l1, c0) ≤ c(l1, c0) ≤ τ(l1, c0). If c0 were order-distinguished, it would follow
that σs(l1, c0) = τ(l1, c0) = β(l1, c0), i.e. in c0 bounded subsets would be order-
bounded, and so each bounded set would be compact, and c0 would be finite-
dimensional.

3◦ (E, C, t) is order-distinguished if and only if (E′, C′, σs(E
′, E)) is order-

quasibarrelled, i.e. barrelled. This dual characterization of order-distinguished
spaces can be easily checked.

4◦ The notions “order-distinguished” and “order-semi-reflexive” depend only
on the dual pair 〈E, E′〉, as well as the notions distinguished and semi-reflexive
in the class of locally convex spaces.

Passing to the behaviour of the introduced properties in connection with the
short exact sequence (∗), we shall prove

Proposition 4.1. 1◦ In the short exact sequence (∗) of Fréchet lcRs let E be
order-distinguished. Then E/F is also order-distinguished, while F need not have
this property.

2◦ If the spaces F and E/F in the short exact sequence (∗) of Fréchet lcRs are
order-distinguished, then E has the same property; hence, order-distinguishedness
is a three-space stable property in the class of Fréchet lcRs .

Proof: 1◦ Firstly, observe that the space m is an order-distinguished Fréchet
lcRs , because its bounded subsets are order-bounded, while its l-ideal c0 is not,
as already mentioned.
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Let E be an order-distinguished Fréchet lcRs and F its closed l-ideal. As stated
before, β(E′, E) = σs(E

′, E) and (E′, σs(E
′, E)) is a barrelled, which means here

also bornological, locally convex space. Since σs(E
′, E)|F ◦ = σs(F

◦, E/F ) (see
the proof of Lemma 1.2), the space (F ◦, C′ ∩ F ◦, σs(F

◦, E/F )) is bornological,
too, and so it is a quasibarrelled lcRs , and it also has to be barrelled.

2◦ Let now the spaces F and E/F in the short exact sequence (∗) of Fréchet
lcRs be order-distinguished, which means also distinguished. Then in their duals
the Dieudonné and the strong topologies coincide. But then the mapping q lifts
bounded sets because a subset ofE/F is bounded if and only if it is order-bounded.
Thus, E is a distinguished space ([2]) and the sequence

0→ (E/F )′β → E′
β → F ′

β → 0

is exact ([10, 26.12]), i.e. the sequence

0→ (E/F )′s → E′
β → F ′

s → 0

is exact. Taking into account Proposition 1.1 and the remark [12, p. 23], we obtain
that E′

β = E′
s, and so the space E is order-distinguished. �

Observe that the already mentioned example of spaces c0 and m shows that in
the class of lcRs there is no matching result to [10, 26.12]:

0→ c0
j
→ m

q
→ m/c0 → 0

is a short exact sequence of Fréchet lcRs (with norm-topologies and canonical
orders), q lifts order-bounded subsets, but the dual sequence

0→ ((m/c0)
′, σs((m/c0)

′, m/c0))→ (m
′, σs(m

′, m))→ (c′0, σs(c
′
0, c0))→ 0

is not exact.
Finally, for order-semi-reflexive spaces we have:

Proposition 4.2. If (E, C, t) is an order-semi-reflexive lcRs , then every closed
l-ideal F in it and every quotient E/F are of the same kind.

Proof: The assertion about l-ideals follows from the fact that each order-interval
in F is also an order-interval in E, which means weakly compact in E and also
weakly compact in F (as a locally convex space). Since, by order-semi-reflexivity
of E, σ(E′, E) ≤ σs(E

′, E) ≤ τ(E′, E), we obtain that

σ(F ◦, E/F ) ≤ σs(F
◦, E/F ) = σs(E

′, E)|F ◦ ≤ τ(E′, E)|F ◦ ≤ τ(F ◦, E/F ),

i.e. E/F is an order-semi-reflexive lcRs . �

We do not know whether order-semi-reflexivity is a three-space stable property.
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