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Paley-Wiener theorems for the Schrodinger operator on R

M.N. Lazhari

Abstract. In this paper we define and study generalized Fourier transforms associated
with some class of Schrodinger operators on R. Next, we establish Paley-Wiener type
theorems which characterize some functional spaces by their generalized Fourier trans-
forms.
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1. Introduction

We consider the symmetric differential operator (L,D0) defined by

D0 = D(R) and Lu(x) = −d
2u

dx2
(x) + q(x)u(x), u ∈ D(R),

where D(R) is the space of C∞-functions on R with compact support and q is a
measurable function satisfying

∫ +∞

−∞
(1 + |x|)|q(x)| dx < +∞.

The operator (L,D0) has a unique self-adjoint extension (L,DL), where (see [3])

DL = {f ∈ L2(R) : f, f ′ are absolutely continuous and L(f) ∈ L2(R)}.

On the other hand, for µ ∈ C+ = {λ ∈ C : (Im(λ) > 0) or (Im(λ) = 0 and
Re(λ) ≥ 0)}, the differential equation Lu = µ2u possesses two linear independent
solutions E±(., µ) satisfying

lim
x→±∞

e∓iµxE±(x, µ) = 1,

which are called generalized eigenfunctions.
We associate with the spectral decomposition of the self-adjoint operator

(L,DL) two generalized Fourier transforms defined by

F±(f)(µ) =
1√
2π

∫

R

f(x)E±(x,∓µ) dx, µ ∈ R, f ∈ D(R).
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In this paper we establish Paley-Wiener type theorems for the operator (L,DL)
which characterize some functional spaces by their generalized Fourier transforms.
The main difficulty to prove these theorems is the study of the generalized eigen-
functions (existence, analicity, asymptotic behavior, . . . ).
This paper is organized as follows.
In the first section, we study the generalized eigenfunctions and we prove that

there exist two kernels K± such that for all µ ∈ C+, we have

E+(x, µ) = e
iµx +

∫ +∞

x
K+(x, s) e

iµs ds

and

E−(x, µ) = e
−iµx +

∫ x

−∞
K−(x, s) e

−iµs ds.

We establish, in the second section, that the generalized Fourier transforms
F± are related to the ordinary Fourier transforms F0 on R by

F±(f) = F0 ◦ (I + tK±)(f),

where

F0(f)(µ) =
1√
2π

∫

R

f(x) e−iµx dx, µ ∈ R, f ∈ D(R)

and tK± are the operators defined respectively by

tK+(f)(x) =

∫ x

−∞
K+(u, x)f(u) du and

tK−(f)(x) =

∫ ∞

x

K−(u, x)f(u) du,

and we study the properties of the operators tK±.
In the third section we study the analyticity of the generalized eigenfunctions

and the Fourier-Plancherel transforms associated with the operator (L,DL).
The proof of the Paley-Wiener type theorem is given in the last section.

2. Generalized eigenfunctions and generalized Fourier transforms

associated with the operator (L,DL)

We consider the symmetric differential operator L defined on R by

Lu(x) = −d
2u

dx2
(x) + q(x)u(x), u ∈ D(R),

where D(R) is the space of C∞-functions on R, with compact support and q is a
measurable function satisfying

∫ +∞

−∞
(1 + |x|)|q(x)| dx < +∞.
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For all µ ∈ C+ = {λ ∈ C : (Im(λ) > 0) or (Im(λ) = 0 and Re(λ) ≥ 0)}, the
differential equation

(2.1) Lu = µ2u

possesses two linear independent solutions E±(., µ) satisfying (see [1], [3] and [4])

(2.2) lim
x→±∞

e∓iµxE±(x, µ) = 1,

which we call generalized eigenfunctions associated with the differential opera-
tor L.

Proposition 2.1. For all µ ∈ C+ and t ∈ R, we have

(2.3) E+(t, µ) = e
iµt +

∫ +∞

t

sinµ(s− t)

µ
q(s)E+(s, µ) ds

and

(2.4) E−(t, µ) = e
−iµt +

∫ t

−∞

sinµ(s− t)

µ
q(s)E−(s, µ) ds.

In particular, there exist constants C±, independent of µ, such that

(2.5) |E±(t, µ)| ≤ C± e
∓Im(µ)t.

Proof: Let µ be in C+. By using the method of the variations of constants and
relations (2.1) and (2.2), we deduce relations (2.3) and (2.4). On the other hand,
we can see that there exists a constant c1 independent of µ such that

|E+(t, µ)| ≤ e−Im(µ)t
[

1 + c1

∫ +∞

t

(1 + |s|)|q(s)| e+Im(µ)sE+(s, µ) ds
]

.

We put f(t) = eIm(µ)tE+(t, µ) and g(t) = c1(1 + |t|)|q(t)|, then we have

f(t) ≤ 1 +
∫ +∞

t

f(s)g(s) ds.

Using the Gromwell lemma (see [6]), we obtain relation (2.5) for the function
E+(., µ) with

C+ = exp
(

∫ +∞

−∞
g(s) ds

)

.

In the same way, we prove relation (2.5) for the function E−(., µ). �



230 M.N. Lazhari

Theorem 2.2. There exist kernels K±(t, s) with support respectively in {(t, s) ∈
R2 : t ≤ s} and {(t, s) ∈ R2 : t ≥ s} such that

(2.6) E+(t, µ) = e
iµt +

∫ +∞

t
K+(t, s)e

iµs ds

and

(2.7) E−(t, µ) = e
−iµt +

∫

−∞

tK−(t, s)e
−iµs ds.

Furthermore these kernels are respectively the unique solution of the following

integral equations:

(2.8) K+(t, s) =
1

2

∫ +∞

t+s

2

q(u) du−
∫ +∞

t+s

2

[

∫ s−t

2

0
q(x− y)K+(x− y, x+ y) dy

]

dx

and

(2.9) K−(t, s) =
1

2

∫ t+s

2

−∞
q(u) du−

∫ t+s

2

−∞

[

∫ 0

s−t

2

q(x− y)K−(x− y, x+ y) dy
]

dx.

Proof: The proof is a consequence of relations (2.1), (2.2), (2.3) and (2.4),
the assumptions on q, the method of the successive approximations, the Fubini
theorem and the injectivity of the ordinary Fourier transform on R. (See [1] and
[3] for more details.)
We put

σ+(t) =

∫ +∞

t

|q(u)| du, σ−(t) =

∫ t

−∞
|q(u)| du

and

ǫ+(t) =

∫ +∞

t
(1 + |u|)|q(u)| du, ǫ−(t) =

∫ t

−∞
(1 + |u|)|q(u)| du.

�

Corollary 2.3. For all t and s in R, we have

|K±(t, s)| ≤
1

2
σ±

( t+ s

2

)

exp(ǫ±(t)).

Corollary 2.4. If q is a Cn-function, n in N, (respectively C∞-function) on R,

then the kernels K± are C
n+1-functions (respectively C∞-functions) on R2.
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Corollary 2.5. Let a be in R. We have

(1) if the support of q is in ]−∞, a], then t+s
2 ≥ a⇒ K+(t, s) = 0,

(2) if the support of q is in [a,+∞[ , then t+s
2 ≤ a⇒ K−(t, s) = 0.

Corollary 2.6. (1) If the support of q is in ] − ∞, a], a ∈ R, (respectively
in [a,+∞[), then for all t in R, the solution µ → E+(t, µ) (respectively µ →
E−(t, µ)) is analytic on C.

(2) if the support of q is compact, then for all t in R, the solutions µ→ E±(t, µ)
are analytic on C.

Definition 2.7. The generalized Fourier transforms F± associated with the op-

erator (L,DL) are defined on D(R) by

(2.10) F±(f)(µ) =
1√
2π

∫

R

f(x)E±(x,∓µ) dx, µ ∈ R.

The generalized Fourier transforms F± are injective (see [4] and [2]) and are
related to the ordinary Fourier transform F0 on R by the relation

(2.11) F±(f) = F0 ◦ (I + tK±)(f), f ∈ D(R),
where

F0(f)(µ) =
1√
2π

∫

R

f(x) e−iµx dx, µ ∈ R, f ∈ D(R)

and tK± are the operators defined respectively by

(2.12) tK+(f)(x) =

∫ x

−∞
K+(u, x)f(u) du, f ∈ D(R)

and

(2.13) tK−(f)(x) =

∫ ∞

x

K−(u, x)f(u) du, f ∈ D(R).

3. The study of the operators tK±

In the following we state theorems which characterize some functional spaces on
which the operators I + tK± are bijective.
Let a be in R, n in N and R > 0. We denote by

– Cn
R,a the space of C

n-functions on R, with support in [−R+ a,R+ a],
– DR,a(R) the space of C

∞-functions on R, with support in [−R+ a,R+ a].
Theorem 3.1. We suppose that the support of the function q is in ] − ∞, a].
Then the operator I + tK+ is bijective

(i) from C1R,a onto itself,

(ii) from Cn+1
R,a onto itself if q is C

n on R,

(iii) from DR,a(R) onto itself if q is C
∞ on R.

The proof of the previous theorem is a consequence of the following proposi-
tions.
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Proposition 3.2. We suppose that the support of the function q is in ]−∞, a].
Then we have

(i) (I + tK+)(C
1
R,a) ⊂ C1R,a;

(ii) if q is Cn on R, then (I + tK+)(C
n+1
R,a ) ⊂ Cn+1

R,a ;

(iii) if q is C∞ on R, then (I + tK+)(DR,a(R)) ⊂ DR,a(R).

Proof: The proof is a consequence of Corollary 2.4 and the fact that
(tK+)(f)(t) = 0, for all t /∈ [−R+ a,R+ a], and for all f in Cn

R,a, n ∈ N. �

Notation. We put

NR
+ (s, u) =

{

K+(u, s) if −R+ a ≤ u ≤ s ≤ +∞,

0 elsewhere.

We consider the following integral equations:

(3.1) h(s) = f(s) +

∫ s

−∞
K+(u, s)f(u) du,

and

(3.2) h(s) = f(s) +

∫ s

−∞
NR
+ (u, s)f(u) du,

where h is a given function and f is an unknown function.

Proposition 3.3. We suppose that the function h is in C1R,a. Then

(i) the support of every solution f of (3.2) is in [−R+ a,R+ a];
(ii) let f be a function with support in [−R + a,R + a], then f is a solution
of (3.1) if and only if f is a solution of (3.2).

Proof: Let h be a function in C1R,a.

(i) It is clear that

∀u ∈ R, ∀ s, s > R + a⇒ NR
+ (u, s) = 0,

hence
∀u ∈ R, ∀ s, s /∈ [−R+ a,R+ a]⇒ NR

+ (u, s) = 0.

Then we deduce that the support of every solution f of the equation (3.2) is in
[−R+ a,R+ a].
(ii) Let f be a function with support in [−R+ a,R+ a]. We obtain

∀ s, s ≤ −R+ a⇒ tK+(f)(s) = 0,

so that

∀ s ∈ R, tK+(f)(s) =

∫ s

−∞
NR
+ (u, s)f(u) du.

�
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Proposition 3.4. Let h be a function in C1R,a. Then the integral equation (3.2)

possesses a unique solution f in C1R,a.

Proof: The equation (3.2) is a Volterra integral equation, we resolve it by using
the method of successive approximations. We put

N0(s, u) = N
R
+ (s, u), and for all n ≥ 1, Nn(s, u) =

∫ s

u
Nn−1(s, v)N

R
+ (v, u) dv.

We put

hn(s) = (−1)n+1
∫ s

−R+a

Nn(s, u)h(u) du,

m = sup
s∈R

|h(s)|,

D = [−R+ a,R+ a]× [−R+ a,R+ a],
M = sup

{

|NR
+ (s, u)|; (s, u) ∈ D

}

.

Hence, for all (s, u) ∈ D, we have |N0(s, u)| ≤M , and for all n ≥ 1,

|Nn(s, u)| ≤Mn+1 (s− u)n

n!
≤Mn+1 [2(R+ a)]

n

n!
.

Since the support of the kernel Nn, n ≥ 1, is in D we deduce that the series of
general term Nn(s, u) is absolutely and uniformly convergent on R2; and its sum

denoted by HR
+ is with support in D and satisfies

|HR
+(s, u)| ≤M exp[2(R+ a)M ].

In the same way we prove that the series of general term hn(s) is absolutely and
uniformly convergent on R; and its sum denoted by

∑∞
n=0 hn(s) has support in

[−R+ a,R+ a] and satisfies
∣

∣

∣

∞
∑

n=0

hn(s)
∣

∣

∣
≤ m exp[2(R+ a)M ].

We put

f(s) = h(s) +
∞
∑

n=0

hn(s)

= h(s) +

∫ s

−R+a
HR
+ (s, u)h(u) du,

so that f is supported in [−R+ a,R+ a] and it is a solution of equation (3.2).
The uniqueness of the solution is a consequence of relation (2.10) and the fact

that F+ is injective.
The derivability of the solution is a consequence of the derivability of the

kernel K and relation (3.2). �

The proof of the following theorem is analogous to that one given for Theo-
rem 3.1.
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Theorem 3.5. We suppose that the support of the function q is in [a,+∞[ .
Then the operator I + tK− is bijective

(i) from C1R,a onto itself,

(ii) from Cn+1
R,a onto itself if q is C

n on R,

(iii) from DR,a(R) onto itself if q is C
∞ on R.

4. Paley-Wiener type theorems

For all n in N and R > 0, we denote by

– Hn+1
R the space of analytic functions ψ on C such that

(4.1)
∀m ∈ {0, 1, . . . , n+ 1}, ∃ cm > 0 such that

∀µ ∈ C, |ψ(µ)| ≤ cm(1 + |µ|)−me|Im(µ)|R;

– HR the space of functions in Hn+1
R , for all n in N.

Theorem 4.1. Let q be a C∞-function and b in R.

(i) If the support of q is in ]−∞, b], then the transform F+ is bijective from
DR,b onto e

−iµbHR.

(ii) If the support of q is in [b,+∞[ , then the transform F− is bijective from

DR,b onto e
+iµbHR.

(iii) If the support of q is in [−|b|, |b|], then the transform F± is bijective from

DR,b onto e
∓iµ|b|HR.

The proof of the previous theorem is a consequence of the following proposition.

Proposition 4.2. Let n be in N, q a Cn-function and b in R.

(i) If the support of q is in ]−∞, b], then

(4.2) F+(DR,b) ⊂ e−iµbHn+1
R

and

(4.3) F−1
+ (e

−iµbHn+1
R ) ⊂ Cn+1

R,b
.

(ii) If the support of q is in [b,+∞[ , then

F−(DR,b) ⊂ eiµbHn+1
R and F−1

− (e
iµbHn+1

R ) ⊂ Cn+1
R,b .

(iii) If the support of q is in [−|b|, |b|], then

F±(DR,±|b|) ⊂ e∓iµ|b|Hn+1
R and F−1

± (e
∓iµ|b|Hn+1

R ) ⊂ Cn+1
R,±|b|

.
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Proof: (i) We begin to prove that F+(DR,b) ⊂ e−iµbHn+1
R . From (2.10) and

Theorem 3.1 we see that it is sufficient to prove that F0(Cn+1
R,b
) ⊂ e−iµbHn+1

R .

Let f be in Cn+1
R,b
, then the function

µ→ F0(f)(µ) =
1√
2π

∫ R+b

−R+b

e−iµtf(t) dt

is analytic on C. On the other hand, we have

F0(f)(µ) = e−iµb
{ 1√
2π

∫ R

−R

e−iµtfb(t) dt
}

= e−iµbF0(fb)(µ),

where fb(t) = f(t + b). It is clear that the function F0(fb) is analytic on C.
Furthermore, by integrating by parts, we deduce that the function F0(fb) satisfies
relation (4.1).
The proof of the relation (4.3) is a consequence of Theorem 3.1 and the fact

that
F−1
0 (e

−iµbHR) = DR,b ⊂ Cn+1
R,b

.

In the same way we obtain the proof of (ii). The proof of (iii) is a consequence
of (i) and (ii). �
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