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On Besov spaces and absolute convergence

of the Fourier transform on Heisenberg groups

Leszek Skrzypczak

Abstract. In this paper the absolute convergence of the group Fourier transform for the
Heisenberg group is investigated. It is proved that the Fourier transform of functions
belonging to certain Besov spaces is absolutely convergent. The function spaces are
defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group.

Keywords: Besov spaces, Heisenberg groups, group Fourier transform

Classification: 46E35, 43A80

1. Introduction

Different problems in harmonic analysis on Heisenberg groups attracted attention
in the last two decades. As far as the group Fourier transform is regarded a
basic reference is Geller’s fundamental work [5], confer also Folland’s book [3].
D. Geller obtained in his paper, among other things, a characterization for the
Fourier transform of rapidly decreasing Schwartz functions. On the other hand a
natural analogue of the Paley-Wiener theorem for Heisenberg groups was proved
by S. Thangavelu [13]. In the classical setting the third type of results that
describe the connection between the smoothness of functions and the behaviour
of their Fourier transform are the Bernstein type theorems. The last ones assert
that the Fourier transform of a function is absolutely convergent if the function
belongs to a suitable Besov space, cf. [1], [7]. In this paper we want to prove the
similar results for the group Fourier transform of the Heisenberg group.
The Heisenberg group Hn = Rn×Rn×R is a nilpotent Lie group whose group

law is defined by

(1) (x1, y1, t1) · (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 +
1

2
(y1 · x2 − x1 · y2)).

The Lie algebra hn of Hn is spanned by the left invariant vector fields

(2) Xi =
∂

∂xi
+
1

2
yi
∂

∂t
, Yi =

∂

∂yi
− 1
2
xi
∂

∂t
, T =

∂

∂t
, i = 1, . . . n.

We have the commutation relations

(3) [Yi, Xi] = T, i = 1, . . . , n,
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and all other commutators vanish. The Haar measure of Hn coincides with the
Lebesgue measure on R2n+1.
For each nonzero real number λ there is a irreducible unitary representation of

Hn on L2(R
n) given by

(4) πλ(x, y, t)φ(ξ) = e
π
√
−1(2tλ+2y·ξ+λx·y)φ(ξ + λx)

where φ ∈ L2(H
n). There are also one dimensional unitary representation of Hn,

π(a,b), a, b ∈ Rn, given by

(5) π(a,b)(x, y, t)ξ = e
2π

√
−1(a·x+b·y)ξ , ξ ∈ C.

Any irreducible unitary representation of Hn is unitary equivalent to one of just
described representations. The representations π(a,b) are of less importance for

us since they form a set of Plancherel measure zero.
For a function f on the Heisenberg group, say f ∈ L1(H

n), the Fourier trans-
form is defined to be the operator valued function

(6) f̂(λ) =

∫

Hn

f(x, y, t)πλ(−x,−y − t) dx dy dt.

If φ ∈ L2(H
n), then f̂(λ)φ is given by

(7) f̂(λ)φ(x) = |λ|n
∫

f(λ−1(x− y), w, t)e−π
√
−1(y+x)·w−2π

√
−1tλφ(y) dy dw dt.

So it is an integral operators with kernel

(8) Kλ
f (x, y) = |λ|−nF2,3f(λ−1(x− y),

1

2
(x+ y), λ),

where F2,3 denotes Fourier transformation in the second and third variables.
The Plancherel formula for Hn looks as follows

(9)

∫

Hn

|f(x, y, t)|2 dx dy dt = cn
∫ ∞

−∞
‖f̂(λ)‖2HS |λ|n dλ.

Here ‖ · ‖HS stands for the Hilbert-Schmidt norm.

2. Besov spaces on Heisenberg groups

To describe the smoothness of functions we use the Besov spaces related to the
full Laplacian on Hn. Let ∆ =

∑n
i=1X

2
i + Y

2
i + T

2 be the sum of squares of left
invariant vector fields. If we equip Hn with the left invariant Riemannian metric
g such that the vector fields are the orthonormal basis in any tangent space, then
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the operator ∆ coincides with the Laplace-Beltrami operator corresponding to this
metric, and the Riemannian measure coincides with the Haar measure on Hn.

The Bessel-potentials (I−∆)−s/2 with s > 0 can be defined in L2(H
n) via the

spectral theory. They can be extended afterwards from L2(H
n) to Lp(H

n) with
1 < p <∞, cf. [12]. For 1 < p <∞, s ∈ R we define the Sobolev spaces W s

p (H
n)

in the following way:

- if s > 0, then W s
p (H

n) is the collection of all functions f ∈ Lp(H
n) such that

f = (I −∆)−s/2h for some h ∈ Lp(H
n), with the norm ‖f |W s

p (H
n)‖ = ‖h‖p,

- if s < 0, then W s
p (H

n) is the collection of all distributions f ∈ D′(Hn) of the

form f = (I − ∆)mh with h ∈ W 2m+s
p (Hn), where m is a natural number such

that 2m+ s > 0, and ‖f |W s
p (H

n)‖ = ‖h|W 2m+s
p (Hn)‖,

- if s = 0, then W 0p (H
n) = Lp(H

n).

The spaces W s
p (H

n) with s < 0 are independent of m (equivalent norms). If s
is a positive integer, then one can use left-invariant vector fields on Hn to define
equivalent norms in W s

p (H
n), cf. [14].

For s ∈ R, 1 < p <∞ and 1 ≤ q ≤ ∞ we define the Besov spaces Bs
p,q(H

n) via
the real interpolation

(10) Bs
p,q(H

n) = (W s0
p (H

n),W s1
p (H

n))θ,q,

s = (1− θ)s0 + θs1, 0 < θ < 1.

The norm in the Besov spaces can be described by the heat semigroupHt = e
t∆

([11]). The heat semigroup Ht is given by a right convolution:

(11) Htf(x) =

∫

G
f(y)ht(y

−1x) dy

where (t, x) −→ ht(x) is a C
∞ function on R+ × G and a positive solution of

( ∂
∂t + ∆)u = 0. The semigroup is symmetric submarkovian, hence analytic in

Lp(G) if 1 < p < ∞. If s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞ and m >
|s|
2 , then the

expression

(12) ‖f |Bs
p,q(H

n)‖H = ‖f ∗ h0,m‖p +
(

∫ 1

0
t(m−s/2)q‖ d

m

dtm
f ∗ ht‖q

p
dt

t

)1/q

is an equivalent norm in Bs
p,q(H

n). Here h0,m is a C
∞ function on Hn given by

(13) h0,m =

m−1
∑

l=0

cl
∂l

∂tl
ht|t=1.

Using the above norm one can define the Besov spaces for p = 1 and p =∞. The
definition if independent of m (equivalent norms). If s > 0, then one can use ‖f‖p

instead of ‖f ∗ h0,m‖p in (12), 1 ≤ p ≤ ∞.
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We have the following elementary topological embeddings

Bs1
p,q1(H

n) ⊂ Bs2
p,q2(H

n) if s1 > s2,(14)

Bs
p,q1(H

n) ⊂ Bs
p,q2(H

n) if q1 < q2,(15)

B0p,p(H
n) ⊂ Lp(H

n) if 1 ≤ p ≤ 2.(16)

More information about function spaces of Hardy-Sobolev-Besov type on Lie
groups and more general on Riemannian manifolds with bounded geometry may
be found in [15] and [10], [11].

3. Absolute convergence of the Fourier transform

We start with the following standard lemma.

Lemma 1. Let 0 < r < c. Then there is a positive constant C > 0 such that
a geodesic ball Ω(0, r) is contained in the euclidean box centered at 0 with sides
parallel to the coordinate axes and sizes Cr.

Proof: We give a short proof of the lemma for completeness. Let (x1, . . . , x2n+1)
∈ Ω(0, r) be a point inside the geodesic ball. Then the is a geodesic γ(t) =
(γ1(t), . . . , γ2n+1(t)) with γi(0) = 0, γi(1) = xi and ‖γ̇(t)‖ ≤ r. There are
functions βi(t) such that

γ̇(t) = (γ̇1(t), . . . , γ̇2n+1(t)) =
n

∑

i=1

βi(t)Xi + βn+1(t)Yi + β2n+1(t)T

and
2n+1
∑

i=1

β2i (t) ≤ r2.

Thus |βi| ≤ r for each i. But (2) implies γ̇i(t) = βi(t) for i = 1, . . . 2n and
γ̇2n+1(t) = β2n+1(t) + 2

∑n
i=1 γn+i(t)βi(t) − γi(t)βn+i(t). Now |γi(1)| ≤

∫ 1
0 |γ̇i(t)| dt ≤ Cr since γi(0) = 0 and r ≤ c. �

The main result reads us follows.

Theorem 1. The following inequalities

∫

R

‖f̂(λ)‖HS |λ|n dλ ≤ C‖f |Bn+[n
2
]+2

1,1 (Hn)‖(17)

∫

R

‖f̂(λ)‖HS |λ|
n
2 dλ ≤ C‖f |Bn+2

1,1 (H
n)‖(18)

hold.
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Remark 1. The measure |λ|n dλ seems to be more natural since it is a Plancherel
measure, but the measure |λ|n

2 dλ better describes the behaviour of the Fourier
transform near zero, cf. the proof of the theorem. So we decide to state the both
inequalities.

The next corollary follows by real interpolation from the above theorem and
Plancherel theorem since B02,2(H

n) = L2(H
n).

Corollary 1. Let sp =
2−p

p (n + [
n
2 ] + 2) and σp =

2−p
p (n + 2) for 1 < p < 2.

Then the following inequalities

(
∫

R

‖f̂(λ)‖p
HS |λ|

n dλ

)1/p

≤ C‖f |Bsp
p,p(H

n)‖(19)

(
∫

R

‖f̂(λ)‖p
HS |λ|

np

2 dλ

)1/p

≤ C‖f |Bσp
p,p(H

n)‖(20)

hold.

Proof of Theorem 1: Step 1. To prove the theorem we use the atomic decom-
position for the spaces Bs

p,q, cf. [10]. For any j, j = 0, 1, . . . , let {Ω(zj,i, 2−j)}∞i=0
be the uniformly locally finite covering of Hn with the multiplicity independent
of j. The atomic decomposition theorem asserts that f ∈ Bs

1,1(Hn), s > 0, if and

only if f can be decomposed into the sum

(21) f =

∞
∑

i,j=0

sj,iaj,i, convergence in S′(R2n+1),

where functions aj,i ∈ C∞
0 (R

2n+1) are smooth atoms and the real numbers sj,i
satisfy the condition

(22)

∞
∑

i,j=0

|sj,i| <∞.

The function aj,i is called a smooth atom if the following two conditions are
fulfilled

supp aj,i ⊂ Ω(xj,i, 2
−j+1),(23)

|Zm1 . . . Zmk
aj,i| ≤ C2−j(s−k−N), k ≤ L(24)

where Zm denotes any left invariant vector field Xi, Yi or T and N = 2n + 1.
The constant L is a fixed real number L > [s] + 1, and C is an absolute constant.
Moreover, the infimum of (22) taken over all possible decompositions (21) is an
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equivalent norm in Bs
1,1(Hn). The details about the atomic decomposition of

Besov spaces on Riemannian manifolds can be found in [10].

Step 2. Let aj,i be the smooth atom supported in Ω(zj,i, 2
−j+1) Then a(z) =

aj,i(zj,i · z) is a smooth atom supported in Ω(0, 2−j+1). Let F3 denotes Fourier
transformation in the third variable. Let zj, = (x0, y0, t0). Then

‖âj,i(λ)‖2HS = |λ|−n
∫

|F3aj,i(x, y, λ)|2 dx dy

= |λ|−n
∫

|F3aj,i(x + x0, y + y0, λ)|2 dx dy,

cf. [3, p. 39]. But

F3aj,i(x+ x0, y + y0, λ) = C

∫

R

aj,i(x+ x0, y + y0, t)e
−
√
−1tλ dt

= C

∫

R

a(x, y, t− t0 −
1

2
(y · x0 − x · y0))e−

√
−1tλ dt

= Ce−
√
−1λ(t0− 12 (y·x0−x·y0))

∫

R

a(x, y, t)e−
√
−1tλ dt,

and

e−
√
−1tλ = (−

√
−1λ)−m dm

dtm
e−

√
−1tλ.

Thus Lemma 1 implies

‖âj,i(λ)‖2HS ≤ C|λ|−n−m
∫

∣

∣

∣

∣

∫

R

e−
√
−1tλTma(x, y, t) dt

∣

∣

∣

∣

2

dx dy

≤ |λ|−n−2m
∫

(

∫ C2−j

−C2−j

|Tma(x, y, t)| dt)2 dx dy

≤ C|λ|−n−2m2−j
∫ ∫ ∫

|Tma(x, y, t)|2 dx dy dt.

Now from the definition of an atom we get

(25) ‖âj,i(λ)‖HS ≤ C|λ|−m−n
2 2−j(s−m−N−1

2
) = C|λ|−m−n

2 2−j(s−m−n).

Using these estimates with m = 0 for small values of |λ| and m = 2 for |λ| big we
get

(26)

∫

R\{0}
‖âj,i(λ)‖HS |λ|

n
2 dλ ≤ C2−j(s−2−n).
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Similarly, taking m = [n+42 ] for big values of |λ| we get

(27)

∫

R\{0}
‖âj,i(λ)‖HS |λ|n dλ ≤ C2−j(s−[n

2
]−n−2).

Step 3. If f ∈ L1(H
n), then the operator f̂(λ) is an integral operator with

kernel

Kλ
f (x, y) = |λ|−nF2,3f(λ−1(x− y),

1

2
(x+ y), λ).

If aj,i is an atom, then the corresponding kernels K
λ
j,i are smooth functions.

If f ∈ Bn+2
1,1 (Hn) and f =

∑∞
j,i=0 sj,iaj,i, then f ∈ L1(H

n) and

∫

f(x, y, t)ψ(x, y, t) dx dy dt =

∞
∑

j,i=0

sj,i

∫ ∫ ∫

aj,i(x, y, t)ψ(x, y, t) dx dy dt,

ψ ∈ S(RN ). Thus

|Kλ
f (x, y)| ≤

∞
∑

j,i=0

|sj,i| |λ|−n| |F2,3aj,i(λ
−1(x− y),

1

2
(x+ y), λ)| =

∞
∑

j,i=0

|sj,i|Kλ
j,i

where Kλ
j,i is a kernel of âj,i(λ). Thus

‖f̂(λ)‖HS = (

∫

|Kλ
f (x, y)|2 dx dy)1/2

≤
∞
∑

j,i=0

|sj,i|(
∫

|Kλ
j,i(x, y)|2 dx dy)1/2 =

∞
∑

j,i=0

|sj,i|‖âj,i‖HS .

Now the theorem follows from inequalities (26)–(27). �

Theorem 2. Let 1 ≤ q ≤ 2 and sq = 2−q
q (n+

1
2 ). Then the following inequality

(28)

(
∫

R

‖f̂(λ)‖q
HS |λ|

n dλ

)1/q

≤ C‖f |Bsq

2,q(H
n)‖

holds.

Proof: For q = 2 the theorem is obvious since B02,2(Hn) = L2(H
n), cf. [14]. We

prove the theorem for q = 1. The rest follows by interpolation. Any function
f ∈ L2(H

n) can be decomposed in the following way

(29) f(x) = C

(

f ∗ h0,m +
∫ 2

0
tm

dm

dtm
f ∗ ht

dt

t

)
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where h0,m ∈ S(R2n+1) is given by (13), cf. [11]. Thus

‖f̂(λ)‖HS ≤ ‖f̂(λ)ĥ0,m(λ)‖HS +

∫ 1

0
tm‖f̂(λ)ĥm

t/2(λ)ĥt/2(λ)‖HS
dt

t

≤ ‖f̂(λ)‖HS‖ĥ0,m(λ)‖HS +

∫ 1

0
tm‖f̂ ∗ hm

t/2‖HS‖ĥt/2(λ)‖HS
dt

t
∫

R

‖f̂(λ)‖HS |λ|n dλ ≤
(

∫

R

‖f̂(λ)‖2HS |λ|n dλ
)1/2 (

∫

R

‖ĥ0,m(λ)‖2HS |λ|n dλ
)1/2

+

∫ 2

0
tm

(
∫

R

‖f̂ ∗ hm
t/2‖2HS |λ|n dλ

)1/2(
∫

R

‖ĥt/2(λ)‖2HS |λ|n dλ
)1/2 dt

t

= ‖f‖2‖h0,m‖2 +
∫ 1

0
tm‖f ∗ hm

t/2‖2‖ht/2‖2
dt

t

≤ ‖f‖2‖hm,0‖2 +
∫ 2

0
t(m−N

4
)‖f ∗ hm

t/2‖2
dt

t
≤ C‖f |Bn+ 1

2

2,1 (Hn)‖.

�

Corollary 2. Let 1 ≤ q ≤ p ≤ 2 and sp,q = n+
2−p

p [
n+2
2 ] +

1
p +

1
q − 1. Then the

following inequality

(30)

(
∫

R

‖f̂(λ)‖q
HS |λ|

n dλ

)1/q

≤ C‖f |Bspq
p,q (H

n)‖

holds.

Remark 2. There is also a heat semigroup version of Bernstein theorem on a
unimodular Lie group, cf. [8] and [4].
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