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Two remarks on weaker connected topologies

P. Delaney, W. Just

Abstract. It is shown that no generalized Luzin space condenses onto the unit interval
and that the discrete sum of ℵ1 copies of the Cantor set consistently does not condense
onto a connected compact space. This answers two questions from [2].
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We say that a topological space 〈X, T0〉 condenses onto a space 〈Y, T1〉 if there
exists a topology T2 on X such that T2 ⊆ T0, and the spaces 〈X, T2〉 and 〈Y, T1〉
are homeomorphic. In [2], Tkačenko, Tkachuk, Uspenskij, and Wilson showed
that hereditarily separable Luzin spaces do not condense onto the unit interval,
and asked whether there are any Luzin spaces that do (Problem 3.4). They also
asked whether it is true in ZFC that the discrete sum of ℵ1 copies of the Cantor
set condenses onto a connected compact space (Problem 3.10). We answer both
questions in the negative. We thank M. Tkačenko for commenting on an earlier
version of this note and suggesting an improvement.

Theorem 1. Assume that the real line cannot be covered by ℵ1 nowhere dense
sets. Then no discrete sum of ℵ1 zero-dimensional compact Hausdorff spaces of
which at least two are nonempty condenses onto a connected compact Hausdorff

space.

Proof: Let X =
⊕

ξ<ω1
Cξ , where each Cξ is a zero-dimensional compact Haus-

dorff space. Let T0 denote the topology of the discrete sum on X , and suppose
T1 is a topology on X such that T1 ⊂ T0, and 〈X, T1〉 is a connected compact
Hausdorff space.
Assuming that the real line cannot be covered by ℵ1 nowhere dense sets, one

can show that no compact Hausdorff space is a union of ℵ1 pairwise disjoint
nowhere dense closed subsets (see [1]). From that we will derive a contradiction.

Lemma 2. Each Cξ is closed in T1. More generally, each closed (in T0) subset
of Cξ remains closed in T1.

Proof: Since T1 ⊆ T0, the identity mapping id : 〈X, T0〉 → 〈X, T1〉 is continuous.
Each closed (in T0) subset of a Cξ is compact, hence its continuous image is
compact in the Hausdorff space 〈X, T1〉, and thus is in particular closed. �
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Lemma 3. Each Cξ is nowhere dense in 〈X, T1〉.

Proof: Suppose towards a contradiction that for some ξ0 ∈ ω1 and U ∈ T1\{∅},
the set Cξ0∩U is dense in U . Since Cξ0 is closed, this implies U ⊂ Cξ0 . Let x ∈ U .
Since Cξ0 is zero-dimensional, there exists V ∈ T0 with x ∈ V = clT0(V ) ⊂ U .
Because the restrictions of T0 and T1 to Cξ0 coincide, Lemma 2 implies that V is
nonempty, clopen in T1, and different from the whole space X . This contradicts
connectedness of T1. �

Thus 〈X, T1〉 is the union of the pairwise disjoint nowhere dense closed subsets
{Cξ : ξ < ω1}, and we get a contradiction. �

Definition 4. An uncountable space X without isolated points is Luzin if all

its nowhere dense sets are countable. A space X is a generalized Luzin space if

|X | = 2ℵ0 , X has no isolated points, and every nowhere dense subset of X has

cardinality < 2ℵ0 .

Theorem 5. No generalized Luzin space can be condensed onto the unit segment.

Proof: Let X be a generalized Luzin space. Recall that a space X satisfies
the κ-c.c. if each family of pairwise disjoint nonempty open subsets of X has
cardinality < κ.

Lemma 6. The space X satisfies the 2ℵ0-c.c.

Proof: Let U be a family of pairwise disjoint nonempty open subsets of X . For
each U ∈ U , pick xU ∈ U , and let A = {xU : U ∈ U}. Then A is a nowhere dense

subset of X , and hence has cardinality < 2ℵ0 . On the other hand, |A| = |U|,
which gives the desired result. �

Lemma 7. If f : X → [0, 1], f is 1-1, onto, and continuous, Y ⊂ [0, 1] with
|Y | = 2ℵ0 , and Y is closed in [0, 1], then f−1(Y ) has nonempty interior.

Proof: Follows immediately from the definition of a generalized Luzin space.
�

Fact 8. There exists a family K = {Kξ : ξ < 2ℵ0} of pairwise disjoint closed

subspaces of [0, 1] such that |Kξ| = 2
ℵ0 for each ξ.

Proof: This follows immediately from the existence of a continuous mapping of
[0, 1] onto [0, 1]2. �

Suppose f : X → [0, 1] is such that f is continuous and bijective. By Fact 8,

there exists K = {Kξ : ξ < 2ℵ0}, a collection of pairwise disjoint closed subspaces

of [0, 1], such that |Kξ| = |2ℵ0 | for each ξ < 2ℵ0 . By Lemma 7, for every Kξ ∈ K,

the inverse image f−1(Kξ) has nonempty interior. Thus U = {int(f−1(Kξ)) :

ξ < 2ℵ0} is a collection of pairwise disjoint nonempty open sets in X . But this

implies that X does not satisfy the 2ℵ0-c.c., contradicting Lemma 6. �
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