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Vanishing of sections of vector

bundles on 0-dimensional schemes

E. Ballico

Abstract. Here we give conditions and examples for the surjectivity or injectivity of the
restriction map H0(X, F )→ H0(Z, F |Z), where X is a projective variety, F is a vector
bundle on X and Z is a “general” 0-dimensional subscheme of X, Z union of general
“fat points”.

Keywords: zero-dimensional scheme, cohomology, vector bundle, fat point

Classification: 14J60, 14F05, 14F17

Let F be a rank r vector bundle on a projective variety X , F spanned by
its global sections. Hence the pair (F, H0(X, F )) induces a morphism f from
X to the Grassmannian G(r, v), v := h0(X, F ), of r-dimensional quotients of
H0(X, F ); the morphism f is uniquely determined, up to a choice of a basis of
H0(X, F ). The geometry of f(X) depends heavily on the rank of the restriction
map rF,Z : H

0(X, F )→ H0(Z, F |Z) for suitable 0-dimensional subschemes ofX .
For instance the existence of hyperosculating points of f(X) or the existence of
high order degenerate points for the differential of f may be translated in terms
of rF,z for suitable Z. In this paper we study rank (rF,Z) for a general union
of so-called “fat points”. The reader may find in [G], [H3], [I1l], [I2] and [AH]
references and motivations for the line bundle case. We just remark that this
is a generalization of the following interpolation problem: how many “functions”
(belonging to a fixed finite-dimensional vector space of “functions”) are there with
given Taylor expansion (up to a certain prescribed order) at a certain number of
points ? What happens if the points are general ? We will show that often rF,Z

has maximal rank, i.e. it is injective or surjective.
Let X be an integral projective variety, m an integer > 0 and P ∈ Xreg. Set

n := dim (X). The (m−1)-th infinitesimal neighborhood of P inX will be denoted
with mP ; hence mP has (IX,P )

m as ideal sheaf. Often mP is called a fat point;

m is the multiplicity of mP and (n+m−1)!/(n!(m−1)!) = mP = h0(mP, OmP )
its degree. If s, m1, . . . , ms are integers > 0 and P1, . . . , Ps are distinct points of
Xreg the 0-dimensional scheme Z :=

⋃
1≤i≤s miPi is called a multi jet of X with

multiplicity max{mi}, type (s;m1, . . . , ms) and degree h0(Z, OZ). For a fixed
type (s;m1, . . . , ms) the set of all multi-jets of type (s;m1, . . . , ms) on X is an
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integral variety of dimension ns. Hence we may speak of the general multi-jet of
type (s;m1, . . . , ms).
Fix a vector bundle E on X and a very ample L ∈ Pic (X). For every integer

m > 0 consider the following property (Condition ($;m) or Property ($;m)) which
the triple (X, E, L) may have:
Condition ($): There is an integer a(m, X, E, L) such for all integers k ≥

a(m, X, E, L) and all types (s;m1, . . . , ms) with multiplicity ≤ m a general multi-

jet Z of type (s;m1, . . . , ms) the restriction map rE⊗L⊗k,Z : H
0(X, E ⊗ L⊗k)→

H0(Z, E ⊗ L⊗k |Z) has maximal rank.
We say that the triple (X, E, L) satisfies Condition ($) (or that it has Property

($)) if (X, E, L) satisfies ($;m) for all m > 0. In the range of integers in which we

will consider the restriction map rE⊗L⊗k,Z we will have Hi(X, E ⊗L⊗k) = 0 for

i > 0 and hence if H0(X, E⊗L⊗k) has maximal rank, then its rank will be either

deg (Z) or χ(E ⊗ L⊗k) (which is uniquely determined by k and the numerical
invariants of X , E and L).
In Section 2 we will prove the following criterion “reduction to the restriction to

a general curve section” to obtain Property ($) for a triple (X, E, L) on a variety
of dimension > 1.

Theorem 0.1. Fix integers n > 0, m > 0 and r > 0. Let X be an integral n-
dimensional projective variety, E a rank r vector bundle on X and L a very ample
line bundle on X . Assume the existence of integers a1, . . . , an−1 with ai > 0 for
all i and with the following property. Take general Di(ai) ∈ |L⊗ai |. For every
integer k with 1 ≤ k ≤ n − 1 set D[k; a1, . . . , ak] :=

⋂
1≤i≤k Di(ai). Assume

that E |D[n − 1; a1, . . . , am−1] satisfies Condition ($). Assume that r divides
both a := deg (L) and pa(D[n − 1; 1, . . . , 1])− 1. Assume that (X, E, L) satisfies
Condition ($; 1). Then (X, E, L) satisfies Condition ($;m).

The proof of Theorem 0.1 will use heavily the proofs in [AH]. In our opinion
the paper [AH] was a revolution on this topic: it contains an extremely powerful
improvement of a method previously introduced by the authors, the statements
proved there are very interesting and the loose ends left for the reader are very
stimulating. In Section 3 we will show for a huge number of Chern classes the
existence of rank 2 reflexive sheaves on P3 with Property ($). Using heavily the
results and proofs of [H2] we will prove the following theorem.

Theorem 0.2. Fix integers c1, c2 and c3 with c1, c2 ≡ c3mod (2), 0 ≤ c3 ≤
4c2 − c1

2 − 4. If 4c2 − c1
2 = 7 or 15, assume c3 6= 0. If c1 is even and c2 is odd,

assume c3 ≤ 4c2 − c1
2 − 6. Then there exists a rank 2 stable reflexive sheaf F on

P3 with ci(F ) = ci for i = 1, 2, 3 and with Property ($). Furthermore, if c3 = 0
and c1 is even, then Condition ($) is satisfied by the general stable bundle in the
irreducible component of the moduli space of rank 2 vector bundles with Chern
classes c1 and c2 containing the real instanton bundles.

In the first section we will consider briefly the case in which X is a smooth
curve. We work over an algebraically closed field K. In Sections 2 and 3 we will
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assume char (K) = 0. It is impossible to follow the proof of Theorem 0.1 (resp.
0.2) without having on the table a copy of [AH] (resp. [H2]).

1. Vector bundles on curves

In this section we consider the case in which the variety is a smooth projective
curve C of genus g ≥ 0 and we do not make any restriction on char (K). By the
classification of line bundles and vector bundles on curves of genus ≤ 1, everything
is well known for g ≤ 1. We will repeat here the classification to show its relation
with Property ($) and that we need to make strong cohomological restrictions to
be sure that a vector bundle of rank > 1 has Property ($).

Example 1.1. Every vector bundle F on P1 is the direct sum of line bundles,
say F ∼= OP1(a1)⊕ · · · ⊕OP1(ar) with a1 ≥ · · · ≥ ar, and the isomorphism class
of F is uniquely determined by the integers a1, . . . , ar. For every effective divisor
Z of P1 with deg (Z) = z, we have h0(P1, IZ ⊗ OP1(a1) ⊕ · · · ⊕ OP1(ar)) =∑
1≤i≤rmax{ai + 1 − z, 0}. Hence OP1(a1) ⊕ · · · ⊕ OP1(ar) has Property ($)

if and only if a1 = ar, i.e. if and only if it is semistable. Furthermore F has
Property ($;m) for some integer m ≥ 1 if and only if it is semistable.

Example 1.2. By Atiyah’s classification of vector bundles on an elliptic curve
X ([A]) every vector bundle on X is a direct sum of semistable vector bundles
and a vector bundle on X has Property ($) if and only if it has Property ($, m)
for some integer m ≥ 1 and this is the case if and only if it is semistable.

From now on we assume g ≥ 2. It is easy to check (see [N, Lemma 2.6]) that
for any integer s ≥ g and any choice of s non-zero integers a1, . . . , as the map

τ : C(a1) × · · · × C(a1) → Pica(C), a :=
∑
1≤i≤s ai, given by τ((P1, . . . , Ps)) :=

OC (
∑
1≤i≤s aiPi) is surjective. Hence the original asymptotic problem for the

vector bundle E is equivalent to the fact that for every integer x and for a general
M ∈ Picx(C), either h0(C, E ⊗ M) = 0 or h1(C, E ⊗ M) = 0. This problem was
considered for the first time by Raynaud ([R]), at least when deg (E) is divisible
by rank (E); the general case may easily be reduced to this case using elementary
transformations. This condition (call it Condition (R) or Property (R)) is obvi-
ously satisfied if rank (E) = 1. If Condition (R) is true for E, then E must be
semistable. If E is a stable bundle with rank 2, then E satisfies Condition (R)
(see [R, Proposition 1.6.2], and use elementary transformations to reduce the case
deg (E) odd to the case deg (E) even considered in [R]). If E is a general stable
bundle (for its degree and rank), then E satisfies Condition (R) (see [R, Propo-
sition 1.8.1] if rank (E) divides deg (E) and use elementary transformations to
reduce the general case to the case considered in [R] or, if char (K) = 0, see [H1,
Theorem 1.2], for much more). If E has a Krull-Schmidt filtration whose graded
subquotients have the same slope and satisfy Condition (R), then E satisfies Con-
dition ($); for instance this is the case if E has rank 2 and it is semistable but not
stable. For every smooth curve C of genus g ≥ 2 and for every integer x ≥ 2 there
is a semistable bundle E of rank xg without Property (R) (see [R, 3.1]); obviously
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at least one of the stable subquotients of E in a Krull-Schmidt filtration of E
cannot have Property (R).

2. Proof of Theorem 0.1

In this section we prove Theorem 0.1.

Remark 2.1. By the adjunction formula we have 2pa(D[n − 1; 1, . . . , 1]) − 2 =
K · L · . . . · L+ deg (L). Hence (again by the adjunction formula or by the genus
formula for reducible curves) if r divides both deg (L) and pa(D[n−1; 1, . . . , 1])−1,
then it divides pa(D[n−1; b1, . . . , bn−1])−1 for all integers bi > 0. If L ∼= A⊗r for
some A ∈ Pic (X) and either dim (X) ≥ 3 or r odd, then this divisibility condition
is satisfied. If r is even and dim (X) = 2 the divisibility condition is satisfied if
L ∼= A⊗2r for some A ∈ Pic (X).

Remark 2.2. Assume r = 2. If E | D[n−1; a1, . . . , an−1] satisfies Condition ($),
then obviously E | D[n − 1; a1, . . . , an−1] must be semistable (see Section 1). If
D[n − 1; a1, . . . an−1] is smooth (i.e. if X is smooth in codimension ≤ 1) and
E |D[n−1; a1, . . . , an−1] is stable and “sufficiently general” or with low rank (say
r ≤ 2), then E |D[n− 1; a1, . . . , an−1] satisfies Condition ($) by the discussion in
Section 1. It is easy to check that the same is true even if D[n−1; a1, . . . , an−1] is
singular. By the theory of semistability for reduced but reducible curves made in
[HK] if E |D[n−1; 1, . . . , 1] is semistable or stable, then E |D[n−1; a1, . . . , an−1]
has the same property (see [HK, Theorem 2.4]).

Proof of Theorem 0.1: By induction on n we may assume that for all integers
k and a; with 1 ≤ k ≤ n − 1 the triple (D[k; a1, . . . , ak], E |D[k; a1, . . . , ak],
L |D[k; a1, . . . , ak]) satisfies Condition ($;m). By the divisibility condition all the
calculations and constructions made in [AH, § 3, 4, 5, 6 and 7], work verbatim,
just inserting a factor r in some of the estimates; however, to help the reader
we will give a few details trying to use the language and, when not conflicting
with previous use, the notations of [AH]. Section 3 of [AH] is just nomenclature;
we just have to assume that in any (a, m)-configuration we want to use and in
any (d, m, a)-candidate we want to use both the number of free points and the
number of Ga-residues are divisible by r. Lemma 3.2 of [AH] follows just from the

asymptotic estimate for h0(X, L⊗d) for d ≫ 0; as remarked in [AH], beginning
of page 11 during the proof of 1.1 (the case M 6= OX ), the same is true for

h0(X, M ⊗ L⊗d), M ∈ Pic (X), M fixed; in our situation instead of M we have
the rank r vector bundle E and this gives that the same asymptotic estimates for
deg (Free (Z)) holds: the expected contribution of every zero-dimensional scheme
is r times its length, while asymptotically, up to terms of order dn−1 (dn in
the notations of [AH] because their ambient variety has dimension n + 1) we

have h0(X, E ⊗ L⊗d) ≈ r(h0(X, L⊗d)). Section 4 of [AH] just contains [AH,
Lemma 4.2]; this lemma holds in our situation (with both the degree of free points
and of the concentrated derivatives divisible by rank (E)) because its proof uses
only [AH, Lemma 3.2], whose extension was discussed before. As remarked in the
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first lines of [AH, § 5], this would be sufficient (plus the corresponding assertion
in lower dimension) if one could start the inductive procedure on X with respect
to the degree of the zero-dimensional subscheme on X , i.e. if one had proved the
theorem for varieties of dimension dim (X) but for zero-dimensional schemes of
low degree; concerning [AH, § 5], we just need to use the concept of “concentrated
derivative” and extend [AH, Lemma 5.2]; for this extension we need only that all

integers h0(G1, E⊗L⊗d |G1) are divisible by rank (E) to be sure that at each step
both the numbers of free points on G1 (resp. Ga−1) and the number of derivatives
on G1 (resp. Ga−1) are divisible by rank (E); see Remark 2.1 for this assertion; if
instead of G1 ∪Ga−1 we fix an integer α with 0 < α < a and consider Gα ∪Ga−α

the same divisibility condition is satisfied for all cohomology groups appearing in
[AH, § 6]. Section 7 of [AH] contains the reduction of [AH, Theorem 1.1], i.e. of our
Theorem 0.1, to the proof of [AH, Proposition 7.1]. The discussion with a vector
bundle E instead of M ∈ Pic(X) works because every relevant integer appearing
therein is (under our assumptions) divisible by rank (E). Then the proof of the
reduction of [AH, 1.1] to [AH, 7.1] goes on by induction on dim (X). The starting
point of the induction on dim (X), i.e. the case of a curve ([AH, Proposition 7.2]) is
one of the assumptions of Theorem 0.1. To conclude the proof it remains to justify
the vector bundle extension of the key differential lemma [AH, Lemma 2.3]. We
will reduce the vector bundle case to the line bundle case (see Lemma 2.3 below).
This approach has the advantage that every improvement of [AH, Lemma 2.3]
(e.g. any characteristic free proof or any extension to more general base rings)
works verbatim. �

Lemma 2.3. Let X be an integral n-dimensional projective variety over K
and F a rank r reflexive sheaf on X whose non locally free locus Sing (F ) is
finite. Let H be an effective, reduced and irreducible Cartier divisor on X such
that H ∩ Sing (F ) = ∅. Let W be a zero dimensional subscheme of X with

W ∩ Sing (F ) = ∅, and let a, d be positive integers. Assume h0(H, F |H) −
deg (W |H) = ry ≥ 0 with y integer. Fix y positive integers m1, . . . , my such that

deg (W )+
∑
1≤i≤y r(mi+n)!/mi!n! ≥ h0(X, F ). Let P1, . . . , Py be generic points

of Y and Q1, . . . , Qy generic points of H . Let Dmi
(Qi) be the simple residue of

miQi with respect to H and D :=
⋃
1≤i≤y Dmi

(Qi). Set Q{m} :=
∑
1≤i≤y miQi,

T :=W ∪ (
∑
1≤i≤y miPi), T

′ := ResH(W )∪D and T ” := (W |H)∪ (
⋃
1≤i≤r Qi).

Assume H1(X, IQ{m}F (−H)) = H0(X, IT ′ ⊗F (−H)) = H0(H, IT ′′ ⊗(F |H)) =

0. Then H0(X, IT ⊗ F ) = 0.

Proof: Let π : P(F ) → X be the projection. Since OP(F )(1) is relatively

very ample, there is R ∈ Pic(X) such that M := π∗(R) ⊗ OP(F )(1) is very

ample. We take a general complete intersection A of r − 2 hypersurfaces in the
linear system |M | and of an element of |M⊗r|. In particular, we assume that
π |A is étale in a neighborhood of π−1(Q1 ∪ · · · ∪ Qy) and of π−1(Wred). Set

{Qij}1≤j≤r := π−1(Qi)∩A. Set W (π) := π−1(W )∩A and H(π) := π−1(H)∩A.

Note that H0(X, F ) ∼= H0(P(F ), OP(F )(1)). We want to apply [AH, Lemma 2.3]
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to W (π) and the points Qij . The points Qij are not generic on H(π) because
π(Qij) = π(Qit) even if j 6= t. Nevertheless, the proof of [AH, § 9, 10, 11, 12]
works in this situation. However, just the application of the statement of [AH,
Lemma 2.3] would give ry generic points Pij ∈ A, while we want points P ′

ij ∈ A

with π(P ′
ij) = π(Pit) for all i, j, t and generic with this property. This is possible

because, since π |A is étale in a neighborhood of π−1(Q1 ∪ · · · ∪Qy) we may pass
from the formal lemma to an effective degeneration of the points Qij , 1 ≤ j ≤ r,
preserving the condition of being in the same fiber of π |A. We take Pi := π(P ′

i1)
and conclude. �

We state explicitly the last part of the proof of Lemma 2.3, because it seems
to be useful even in the rank 1 case.

Remark 2.4. We use the notations of the statements of Lemma 2.3. Assume
that a subset S of {1, . . . , y} and every i ∈ S, Qi ∈ Di with Di integral curve
intersecting transversally H at Qi; we allow the case Di = Dj for some (i, j) ∈
S × S with i 6= j. Then in the statement of Lemma 2.3 for every i ∈ S we may
take as Pi a general point of Di.

3. Proof of Theorem 0.2

In this section we consider the case in which X = P3 and prove Theorem 0.2.
Here we prove the existence of rank 2 stable vector bundles (and of non-locally
free reflexive sheaves) with Property ($) for a large number of Chern classes ci,
1 ≤ i ≤ 3. For all (c1, c2, c3) covered by the statement of Theorem 0.2 we will
show that Condition ($) is satisfied by the general member of the irreducible
component, M(c1, c2, c3), of the moduli space of rank 2 stable reflexive sheaves
such that in [HH] and [H2] it was proved that a general E ∈ M(c1, c2, c3) has
semi-natural cohomology in the sense of [HH]. Recall that a rank 2 reflexive sheaf
E on P3 has semi-natural cohomology if for all integers t ≥ −2− c1(E)/2 at most
one the cohomology groups Hi(P3, E(t)), 0 ≤ i ≤ 3, is not zero.
To explain the proof of Theorem 0.2 and the approach of [HH] and [H2] to the

proof of the existence of reflexive sheaves with semi-natural cohomology we will
consider first the following toy case.

Proposition 3.1. Let X be a smooth projective 3-fold, A, B, L ∈ Pic(X) with L
very ample and a 1-dimensional subscheme of X . Fix an integer s ≥ 0 and assume
that for a general surjection f : A ⊗ L⊗s ⊕ B ⊗ L⊗s, Ker (f) is the flat limit of a
family of reflexive sheaves parametrized by an integral variety. Call F the generic
member of this family. By semicontinuity F has a good cohomological property
(e.g. Property ($)) if Ker (f) has the same property. We assume that the map

h(f(t)) : H0(X, A⊗L⊗(s+t)⊕B⊗L⊗(s+t))→ H0(Y, OY ⊗L⊗(s+t)) is surjective

for all t ≥ 0, that h(f(0)) is bijective and that hi(X, A ⊗ L⊗(s+t)) = hi(X, B ⊗

L⊗(s+t)) = hi(Y, OY ⊗L⊗(s+t)) = 0 for every i > 0 and every t ≥ 0. Assume that

for all integers t > 0, the integers h0(X, A ⊗ L⊗(s+t)) − h0(X, A ⊗ L⊗(s+t−1)),
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h0(X, B⊗L⊗(s+t))−h0(X, B⊗L⊗(s+t−1)) and h0(Y, OY ⊗L⊗(s+t))−h0(Y, OY ⊗

L⊗(s+t−1)) are even; this is always the case if L ∼= M⊗2 for some M ∈ Pic(X).
Then Ker (f) and F have Property ($) with respect to L.

Proof: By semicontinuity it is sufficient to prove that Ker (f) has Property ($).
Let V be the total space of the vector bundle A ⊕ B and call π : V → X
the projection. The surjection f(0) induces an embedding i : Y → V. We fix
the integer m > 0, a large integer n (how large it will be clear later), a type
(x;m1, . . . , mx) for multi-jets with multiplicity ≤ m and a generic multi-jet Z of
type (x;m1, . . . , mx). If mx ≤ mi for i ≤ x, we may assume 2 deg (Z) − (mx +

3)(mx+2)(mx+1)/6+(mx+2)(mx+1)mx/6 < h0(X, A⊗L⊗(s+n))+h0(X, B⊗

L⊗(s+n))−h0(Y, OY ⊗L⊗(s+n)) = dim (Ker (f(n))) ≤ 2 deg (Z)+(mx+3)(mx+
2)(mx+1)/6−(mx+2)(mx+1)mx/6. Adding simple points, we will even assume
2 deg (Z) ≥ dim (Ker (f(n))). Then we apply the reduction steps in [AH, § 3, 4, 5
and 6] to reduce the case of multiplicity ≤ m to the case of multiplicity ≤ m− 1;
here we work on π−1(T ) with T generic in |L⊗a| for some a > 0. The difference
with respect to [AH] is that now in the hypersurface π−1(T ) of V we have also
the a · deg (L |Y ) points π−1(T )∩ i(Y ). Since Zred ∩ T is made by generic points
of T and card (Zred ∩ T ) increases with order > 1 as function of a, we may apply
verbatim the asymptotic estimates in [AH, Lemma 4.2]; here of course we use
the parity condition to pass from an assertion concerning Ker (h(f(n))) to an

assertion concerning Ker (h(f(n − a))). Then we exploit a general D ∈ |L⊗n′

|
to reduce the assertion to the bijectivity of f(0); again, here we use the parity
condition. �

Remark 3.2. In the case A = B the proof of [H2, § 3] shows how to reduce the
search of pairs (s, Y ) with h(f(0)) of maximal rank to the search of curves Y ′ ⊂ X
with good postulation, i.e. to a problem usually much easier.

Proof of Theorem 0.2: We divide the proof into 4 steps.

Step 1. We follow the notations of the proof of 3.1. Again we reduce to the
case m = 1 (for some integer n′ ≤ n with n′ − n even) taking always generic
hypersurfaces T ∈ |L⊗a| with a even and degenerating T to the generic union

T ′ ∪ T ′′ with T ′ ∈ |L⊗(a−2)|, T ′′ ∈ |L⊗2|, T ′ and T ′′ generic, instead of taking

T ′ ∈ |L⊗(a−1)| and T ′′ ∈ |L|. In this way we do not need the parity condition
assumed in 3.1 to reduce to the critical case m = 1.

Step 2. We follow the proof of [H2] and in particular the proofs in [H2, Sections 3,
4, 5 and 6]. We assume m = 1, i.e. we consider only simple points. We have seen
in Step 1 how to reduce the general case m ≥ 1 to this case without using any
parity condition. We do not have a curve, Y , for which a suitable map f(0) (with
deg (A) = 0 and deg (B) = −b, 0 ≤ b ≤ 3) is bijective. In [H2] the corresponding
scheme Y is the union of a smooth curve Y ′ and of h0(P3, A⊗L⊗s)+h0(P3, B⊗
L⊗s)− h0(Y ′, OY ′(s)) colinear points.
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Step 3. If Y = Y ′ and the corresponding sheaf has Chern classes ci, then we
have won. In the general case there is an integer, e, with 0 ≤ e ≤ s < s (see
[H2, § 4, notations 4.0]) for the cases with b 6= 0, or integers ei,1 = 1, 2, with
0 ≤ ei ≤ s for the case b = 0 (see [H2, § 3]) and the union Y of suitable collinear
points. A sheaf with seminatural cohomology will be associated to the integer s
and to a union of integral components of Y ′ (case in which H0(P3, F (s)) 6= 0)
or to a curve containing Y ′ and a line containing the e collinear points (case in
which H0(P3, F (s)) = 0). We assume n′ > s+(s+1)2. This is true (for fixed m)
for large n. We have an integer y ≥ 0, a “suitable” general curve T , a general
surjection f(0) : OP3(s)⊕OP3(s−b)→ OT (s); to conclude it would be sufficient
to prove that for general S ⊂ P3 with card (S) = y the induced map f(0, W ) :
H0(P3, IW⊗OP3(s))⊕H0(P3, IW⊗OP3(s))→ H0(T, OT (s)) has maximal rank.
Since the local deformation spaces of the sheaves of type Ker (f(0)) is smooth, each
of them is a flat limit of reflexive sheaves belonging to the irreducible component
M(c1, c2, c3). Hence it is sufficient to check that for some integer k ≥ s with
k ≤ n′ there is A ⊂ P3, card (A) = [(h0(P3, OP3(k)) + h0(P3, OP3(k − b)) −
h0(T, OT (k)))/2] the map f(k − s, A) : H0(P3, IA ⊗ OP3(k)) ⊕ H0(P3, IA ⊗
OP3(k − b))→ H0(T, OT (k)) is surjective and for some B ⊂ P3 with card (B) =
card (A)+ 1 the map f(k− s, B) : H0(P3, IB ⊗OP3(k))⊕H0(P3, IB ⊗OP3(k−
b))→ H0(T, OT (k)) is injective. We start with a good configuration (a curve M
union collinear points) for the integer s − 1 constructed in [H2] (in § 3+b for the
integer b, 0 ≤ b ≤ 3). Then, instead of using it to obtain a good configuration
for the integer s we add over a plane H (i.e. on V(OP2 (−b)) for b 6= 0 and
on P2 × A2 for b = 0) general points and a low degree curve which will be a
union of components of the curve T \ M ; we do this with the construction with
nilpotents described in [H2, 4.5, 5.5 and 6.5]. However, since we may use up
to (s + 1)2 > deg (T ) − deg (M) steps, we are never forced to use more than 3
nilpotents at each step and hence the arithmetic simplifies drastically.

Step 4. For the last assertion, i.e. that M(0, c2, 0) contains the real instanton
bundles, see the introduction of [HH]. �
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