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Groups, transversals, and loops
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Abstract. A family of loops is studied, which arises with its binary operation in a natural
way from some transversals possessing a “normality condition”.
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§1. Introduction

The study of loops leads in a natural way to the study of transversals of sub-
groups, for example the works of: Karzel, Kepka, Kiechle, Kinyon, Niemenmaa,
Phillips, Sabinin, Ungar, and et al. [6], [10], [11], [13], [15], [16]. Loops have also
played an important role in the study of groups such as in Conway’s celebrated
construction of the Fischer-Griess monster group using Parker’s Moufang loop of
order 213. This led to Griess’s construction of binary code loops by a double cover
elementary abelian 2-group ([3], [8]). From the above one can see that there is a
strong connection between the study of group and loops.
Sabinin has shown that every left loop arises with its binary operation in a

natural way from some special transversal of a subgroup in certain groups ([16]).
In this paper I will look at a family of loops which arises with its binary operation
in a natural way from some transversals which possesses a “normality condition”.
Subgroups and subsets of groups with normality conditions such as subnormality,
seminormality, and etc. have interested me for a long time ([4], [5]).

§2. AP -loop as transversals of groups

Definition 2.1. A groupoid ([1]) is a nonempty set with a binary operation. An
automorphism of the groupoid (S,⊙) is a bijection of S that respects the binary
operation ⊙ in S. The set of all automorphisms of (S,⊙) forms a group denoted
by Aut(S,⊙).

Definition 2.2. A left loop is a groupoid (S,⊙) with an identity element in which
the equation a ⊙ x = b possesses a unique solution for the unknown x. (S,⊙) is
a loop if y ⊙ a = b also possesses a unique solution.
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Definition 2.3. Given a left loop P and an ordered pair (a, b) ∈ P × P we
get a bijection δa,b : P → P defined by a ⊙ (b ⊙ x) = (a ⊙ b) ⊙ δa,bx for any
x ∈ P . Here δa,b is a correction to associativity called a left inner mapping
([1]). Let ASδ(P ) be the group generated by all the bijections δa,b (Note that

(a ⊙ b)⊙ x = a ⊙ (b ⊙ δ−1
a,b

x)).

Note. It is shown in [16] that if La for a ∈ P is the left translation by a, then

δa,b = L−1
(a⊙b)

LaLb where the product is in the permutation group LP generated

by all left translations.

Definition 2.4. We will call a left loop (or a loop) a left Al-loop (or Al-loop
respectively) if for all (a, b) ∈ P × P , δa,b ∈ Aut(P,⊙).

Definition 2.5. A groupoid (P,⊙) has the left inverse property if for each a ∈ P ,
there is a unique a−1 ∈ P such that a−1 ⊙ (a ⊙ b) = b for all b in P .

Definition 2.6. A left Al-loop P (or an Al-loop) is a left AP -loop (or AP -loop
respectively) if it possesses the left inverse property.

Definitions of two well known AP -loops are presented below:

Definition 2.7 (Al-Bol-loop = Gyrogroup [15], [17]). A groupoid (G,⊙) is an
Al-Bol-loop if its binary operation satisfies the following axioms. In G there is at
least one element, 1, called a left identity, satisfying

(G1) 1⊙a = a Left Identity
for all a ∈ G. There is an element 1 ∈ G satisfying axiom (G1) such that for
each a in G there is an x in G, called a left inverse of a, satisfying

(G2) x ⊙ a = 1. Left Inverse

Moreover, for any a, b, z ∈ G there exists a unique element δa,bz ∈ G such that

(G3) a ⊙ (b ⊙ z) = (a ⊙ b)⊙ δa,bz.

If δa,b denotes the map δa,b:G → G given by z 7→ δa,bz then

(G4) δa,b ∈ Aut(G,⊙),

(G5) δa,b = δa⊙b,b. Left Loop Property

Definition 2.8 (Gyrocommutative Gyrogroup = K-loop = Bruck-loop [9], [15],
[17]). The Al-Bol-loop (G,⊕) is a Bruck loop if for all a, b ∈ G,

(G6) a ⊙ b = δa,b(b ⊙ a).

In case P is a left Al-loop, since δa,b ∈ Aut(P,⊙), Sabinin’s [16] “semidirect
product” becomes:

Definition 2.9. Let P = (P,⊙) be a left Al-loop, and let ASδ(P ) ≤ H ≤
Aut(P,⊙). The semidirect product group

P⋊p H
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is the set of ordered pairs (x, X), where x ∈ P and X ∈ H , with the binary
operation given by

(x, X)(y, Y ) = (x ⊙ Xy, δx,XyXY ).

Below is a corollary to Sabinin’s Theorem 2 [16] about “semidirect products”:

Corollary 2.10. Let (P,⊙) be a left Al-loop, and let ASδ(P ) ≤ H ≤ Aut(P,⊙).
Then P⋊p H is a group.

Definition 2.11. A set B is a transversal in a group G (all transversals in this
article are left transversals) of a subgroup H of G if every g ∈ G can be written
uniquely as g = bh where b ∈ B and h ∈ H . Let b1, b2 ∈ B be any two elements
of B, and let

b1b2 = (b1 ⊙ b2)h(b1, b2)

be the unique decomposition of the element b1b2 ∈ G, where b1 ⊙ b2 ∈ B and
h(b1, b2) ∈ H , determining (i) a binary operation, ⊙, in B, called the loop or
transversal operation of B induced by G, and (ii) a map h:B×B → H , called the
transversal map. The element h(b1, b2) ∈ H is called the element ofH determined
by the two elements b1 and b2 of its transversal B in G. A transversal groupoid
(B,⊙) of H in G is a groupoid formed by a transversal B of H in G with its
transversal operation ⊙.

Definition 2.12. A transversal groupoid (B,⊙) of a subgroup H in a group G
is an Al-transversal of H in G if

(i) 1G ∈ B, 1G being the identity element of G;
(ii) B is normalized by H , H ⊆ NG(B), that is, hBh−1 ⊆ B for all h ∈ H .

Note. If an Al-transversal is also a subgroup, then it is a normal subgroup. So
we see that an Al-transversal possesses a “normality condition”.

Theorem 2.13. Let (B,⊙) be an Al-transversal groupoid of a subgroup H in
a group G. Then, for any a, b, x ∈ B, (a ⊙ b) ⊙ δa,bx = a ⊙ (b ⊙ x) and δa,b ∈
Aut(B,⊙).

Proof: Let a, b ∈ B be any two elements of B, and let ab = (a⊙ b)h(a, b) be the
unique decomposition of the element ab ∈ G, where a ⊙ b ∈ B and h(a, b) ∈ H .

Let δa,bx = xh(a,b) = h(a, b)x(h(a, b))−1 for all x ∈ B.
For all a, b, c ∈ B we have in G,

(2.1) (ab)c = a(bc).

Employing the uniqueness of the decomposition for both sides of (2.1) we have

(ab)c = (a ⊙ b)h(a, b)c

= (a ⊙ b)δa,bch(a, b)

= ((a ⊙ b)⊙ δa,bc)h(a ⊙ b, δa,bc)h(a, b)

(2.2)
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on one hand, and

a(bc) = a(b ⊙ c)h(b, c)

= (a ⊙ (b ⊙ c))h(a, b ⊙ c)h(b, c)

(2.3)

on the other hand. It follows from (2.1)–(2.3) and from the uniqueness of the
decomposition that

(a ⊙ b)⊙ δa,bc = a ⊙ (b ⊙ c).

We now have to show that

(x ⊙ y)h(a,b) = xh(a,b) ⊙ yh(a,b)

for all a, b, x, y ∈ B.
More generally, however, we will verify the desired identity for any k ∈ H

regardless of whether or not k possesses the form k = h(a, b). We will thus show
that

(x ⊙ y)k = xk ⊙ yk

for any k ∈ H . Clearly, we have in G

(xy)k = xkyk.

Employing the unique decomposition G = BH , we have

(xy)k = ((x ⊙ y)h(x, y))k = (x ⊙ y)kh(x, y)k

on one hand, and

xkyk = (xk ⊙ yk)h(xk , yk)

on the other hand. It follows from the above and from the uniqueness of the
decomposition G = BH that

(x ⊙ y)k = xk ⊙ yk,

which completes the proof. �

Theorem 2.14. An Al-transversal B of a subgroup H in G that possesses the
left inverse property is a left AP -loop under the loop operation.

Proof: We have to show that (B,⊙) satisfies axioms (G1)–(G4) of Definition 2.7
and is a left loop. Axioms (G3) and (G4) are verified in Theorem 2.13, and we
get (G2) from the left inverse property.
Given b ∈ B we get

b = 1b = (1⊙ b)h(1, b)

Hence (G1) is verified. Given a ⊙ x = b we have a unique solution a−1 ⊙ b. �

Note. If B is an Al-transversal with B = B−1, then B is an left AP -loop.
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Definition 2.15. An Al-transversalB with B = B−1 is called an AP -transversal
= gyrotransversal ([6]).

Example 2.16. Let P ⊂ Sn where P consists of the identity permutation and
all 2-cycles of the form (1, i) for i = 2, . . . , n. Let H be the stabilizer of 1 in Sn.
Then P is a transversal of H , and is, in fact, an AP -transversal, but P is not
a loop.

Note. P = P−1 and if a ∈ P and h ∈ H , then hah−1 ∈ P .

§3. A family of AP -loops

In the literature there are many examples of Al-Bol-loops and K-loops which
are all necessarily AP -loops. In this section we will look at a family of AP -loops
that are not Al-Bol-loops (and thus not K-loops).

Definition 3.1 (Diagonal transversals). Let K be a group and let G = K⋊p

Inn(K) be the semidirect product group of K and Inn(K), where Inn(K) is the
inner automorphism group of K whose generic element αk denotes conjugation
by k ∈ K (i.e. αkx = kxk−1). Then, the diagonal transversal D generated by K
(in G) is the subset of G given by

D = {(k, αk)|k ∈ K} ⊂ G

which is a transversal of Inn(K) in G. Any element (k, αk) ∈ D is determined
by a corresponding element k ∈ K. We therefore use the notation

D(k) = (k, αk)

to denote the elements of D.

Theorem 3.2. A diagonal transversal with its transversal operation is an

AP -transversal.

Proof: ([6, Theorem 3.2]). �

Definition 3.3 (Associated Left Gyrogroups) [6]. The associated left gyrogroup
of a group (K, ·) from Theorem 3.2 is the left Al-loop (K,⊙). The operation ⊙ is
given in terms of the group operation · by a ⊙ b = aba = a2ba−1 for all a, b ∈ K.
This corresponds to the transversal operation of the diagonal transversal.

Theorem 3.4. If K is a nilpotent group, then (K,⊙) is an AP -loop.

Proof: It will suffice to show that the equation x ⊙ a = b has a unique solution
for x. It is true when (K, ·) is abelian, and an induction on the class (divide out
the center) does the rest. �

Theorem 3.5. The associated left gyrogroup (K,⊙) of a group (K, ·) is a group
if and only if (K, ·) is nilpotent of class 2.

Proof: ([6, Theorem 3.6]). �
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Definition 3.6. Given a, b ∈ E let [a,1 b] = [a, b] and inductively [a,n+1 b] =
[[a,n b], b]. A group E is n-Engel group ([14]) [a,n b] = 1 for all a, b ∈ E.

Theorem 3.7. Let (K,⊙) be the associated left gyrogroup of a group (K, ·).
Then (K,⊙) is a Al-Bol-loop = gyrogroup if and only if (K, ·) is central by a
2-Engel group.

Proof: ([6, Theorem 3.7]). �

Hence, for any nilpotent group (K, ·) of class ≥ 5, the associated groupoid
(K,⊙) is an AP -loop but not Al-Bol-loop, since it is nilpotent but not central by
a 2-Engel group.

§4. A multiplication table and a look at normal subgroups of loops

Example 4.1 (A Al-Bol-loop multiplication table). The lowest order of a nilpo-
tent group of class 3 which is not of class 2 is 16. Using the software package
MAGMA ([2]) we found three non-isomorphic nilpotent groups of order 16 which
are of class 3 but are not of class 2. Their associated left gyrogroup generate
three non-K-loops (i.e., non-Bruck-loops) Al-Bol-loops of order 16, denoted by
K16, L16, and M16. The multiplication table of K16, is presented in Table I,
where the elements ki ∈ K16, i = 1, 2, . . . , 16, are denoted by their subscripts.

Table I (The Al-Bol-loop K16)

◦ | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
− | − − − − − − − − − − − − − − − −
1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 | 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 | 3 4 2 1 7 8 6 5 12 11 9 10 16 15 13 14
4 | 4 3 1 2 8 7 5 6 11 12 10 9 15 16 14 13
5 | 5 6 7 8 4 3 1 2 16 15 13 14 10 9 12 11
6 | 6 5 8 7 3 4 2 1 15 16 14 13 9 10 11 12
7 | 7 8 6 5 1 2 3 4 14 13 16 15 11 12 10 9
8 | 8 7 5 6 2 1 4 3 13 14 15 16 12 11 9 10
9 | 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8
10 | 10 9 12 11 14 13 16 15 2 1 4 3 6 5 8 7
11 | 11 12 10 9 15 16 14 13 4 3 1 2 8 7 5 6
12 | 12 11 9 10 16 15 13 14 3 4 2 1 7 8 6 5
13 | 13 14 15 16 12 11 9 10 7 8 6 5 1 2 3 4
14 | 14 13 16 15 11 12 10 9 8 7 5 6 2 1 4 3
15 | 15 16 14 13 9 10 11 12 5 6 7 8 4 3 1 2
16 | 16 15 13 14 10 9 12 11 6 5 8 7 3 4 2 1

K16 has only one non-identity left inner mapping, A, whose transformation
table is given in Table II.
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Table II (The automorphism A of K16)

1→ 1 5→ 5 9→ 10 13→ 14
2→ 2 6→ 6 10→ 9 14→ 13
3→ 3 7→ 7 11→ 12 15→ 16
4→ 4 8→ 8 12→ 11 16→ 15

The left inner mapping δa,b generated by any a, b ∈ K16 is either A or the
identity automorphism denoted by 1. The left inner mapping table for δa,b is
presented in Table III.

Table III (The left inner mapping δa,b of K16)

δ | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
− | − − − − − − − − − − − − − − − −
1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 | 1 1 1 1 1 1 1 1 A A A A A A A A
6 | 1 1 1 1 1 1 1 1 A A A A A A A A
7 | 1 1 1 1 1 1 1 1 A A A A A A A A
8 | 1 1 1 1 1 1 1 1 A A A A A A A A
9 | 1 1 1 1 A A A A 1 1 1 1 A A A A
10 | 1 1 1 1 A A A A 1 1 1 1 A A A A
11 | 1 1 1 1 A A A A 1 1 1 1 A A A A
12 | 1 1 1 1 A A A A 1 1 1 1 A A A A
13 | 1 1 1 1 A A A A A A A A 1 1 1 1
14 | 1 1 1 1 A A A A A A A A 1 1 1 1
15 | 1 1 1 1 A A A A A A A A 1 1 1 1
16 | 1 1 1 1 A A A A A A A A 1 1 1 1

Definition 4.2. A subloop X of a loop P is a normal subgroup ([7]) of P if it is
a normal subloop which is in the middle nucleus i.e.

(i) δa,x = 1 for all x ∈ X and a ∈ P ;
(ii) δa,b(X) ⊆ X for all a, b ∈ P ;
(iii) a

⊙
X = X

⊙
a for all a ∈ P .

Note. If X is a normal subgroup of a loop P , then X is a group with group
operation given by the restriction of ⊙ to X .

Note. Since a normal subgroup X of P is a normal subloop, P/X forms a factor
loop.
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Theorem 4.5. If (P,⊙) is a Al-Bol-loop, then P has a normal subgroup Ξ such
that P/Ξ is a Bruck-loop.

Proof: ([7, Theorem 4.11]). �

Example 4.6. The 4 × 4 upper left corner of Table I forms a multiplication
table of a group, H . The group H is a normal subgroup of K16. The quotient
K16/H turns out to be an abelian group. Hence, we have in hand an example of
an extension of a group by another group that gives a non-associative structure
(that is, the Al-Bol-loop K16). It is an extension which is far from being trivial
since H and K16/H are groups while K16 is a non-Bruck-loop Al-Bol-loop.

§5. Open questions

Question 5.1. Are there any nontrivial AP -transversals that are loops in finite
simple groups (The answer is positive in the infinite case [12], but I suspect that
it is negative in the finite case)?

Question 5.2. For which groups is the associated left gyrogroup an AP -loop ?
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