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On Moufang A-loops

J.D. Phillips

Abstract. In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige
developed a provocative line of research detailing the similarities between two important
classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they
did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn,
managed to show that diassociative, commutative A-loops are Moufang ([5]). In [2] we
relaunched this now over 50 year old program by examining conditions under which
general — not necessarily commutative — diassociative A-loops are, in fact, Moufang.
Here, we finish part of the program by characterizing Moufang A-loops. We also inves-
tigate simple diassociative A-loops as well as a class of centrally nilpotent diassociative
A-loops. These results, in toto, reveal the distinguished positions two familiar classes
of diassociative A-loops — namely groups and commutative Moufang loops–play in the
general theory.
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1. Basic notions

A loop is a set with a single binary operation, denoted by juxtaposition, such in
xy = z, knowledge of any two of x, y, and z specifies the third uniquely, and with
a unique two-sided identity element, denoted by 1. A diassociative loop is a loop
in which the subloop generated by any pair of elements is a group. A Moufang
loop is a loop satisfying the identity ((xy)x)z = x(y(xz)). Moufang loops are
diassociative ([4]).
The multiplication group, Mlt(L), of a loop L is the subgroup of the group of

all bijections on L generated by right and left translations. That is, Mlt(L) :=
〈R(x), L(x) : x ∈ L〉, where R(x) (respectively, L(x)) is right (respectively, left)
translation by x. Clearly, Mlt(L) acts as a permutation group on L. The subgroup
of Mlt(L) which fixes the identity element in L is called the inner mapping group.
An A-loop is a loop L for which every inner mapping is an automorphism of L.
There are A-loops that are not diassociative, hence not Moufang ([1]). Thus,
the focus of the Bruck-Paige program, and our focus here, is on diassociative
A-loops. The class of diassociative A-loops is a proper subvariety of the variety
of all loops ([1]). Two familiar subvarieties of the variety of diassociative A-
loops are the variety of all groups and the variety of all commutative Moufang
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loops ([5]). The results in this paper underscore the central role assumed by these
two subvarieties.
Let L be either a Moufang loop or a diassociative A-loop. The nucleus, Nuc(L),

of L is the normal subloop of all elements that associate with all pairs of elements
from L. That is, Nuc(L) := {x ∈ L : ∀ y, z ∈ L, (xy)z = x(yz)}. The Moufang
center, C(L), of L is the subloop of those elements that commute with every
element in L. That is, C(L) := {x ∈ L : ∀ y ∈ L, xy = yx}. The Moufang center of
an A-loop is normal, while the Moufang center of a Moufang loop is not necessarily
normal. The center, Z(L), of L is the normal subloop of those nucleus elements
that commute with each element in L. That is, Z(L) = Nuc(L) ∩ C(L). Finally,
we remind the reader of the standard notation for the inner mapping T (x) :=
L(x−1)R(x).

2. Simple diassociative A-loops

Identifying the simple algebras of a given variety is a fundamentally important
part of any serious investigation of that variety. We will see that many of the
simple diassociative A-loops have a surprisingly “simple” and familiar structure.
Toward that end, we recall a useful technical result.

Theorem 1. Let L be a diassociative A-loop.

1. There is a homomorphism f from L to a groupG given by f(x) = K∗T (x),
where K∗ is a certain normal subgroup of the inner mapping group.

2. If L is Moufang, then K∗ = 1, and hence T (x)T (y) = T (xy) for each
x, y ∈ L, ker(f) = C(L), and L/C(L) is a group.

Proof: [1, Theorem 3.4]. �

Corollary 2. If L is a finite, Moufang A-loop, and if C(L) is 2-divisible, then
Nuc(L) contains all those elements in L whose orders are coprime with |C(L)| (in
addition to all cubes and commutators, as guaranteed by Theorem 5 below).

Proof: Given x, y ∈ L, let h = R(x)R(y)R(xy)−1. Since L/C(L) is a group,
given z ∈ L, we must have zh = zc for some c ∈ C(L). Since h is an automor-
phism, |z| = |zh| = |zc|. Thus, since c ∈ C(L), |c| divides |z|. So if |z| is coprime
with |C(L)|, then since C(L) satisfies the Lagrange property ([3, Theorem 2]), c
must be trivial and zh = z, and hence z ∈ Nuc(L). �

For the balance of this paper, ker(f) will refer to the kernel of the homomor-
phism f given in Theorem 1. For an arbitrary diassociative A-loop L, clearly
C(L) ≤ ker(f). If L is Moufang, Theorem 1 guarantees that ker(f) ≤ C(L).
We are interested in generalizing this condition. For p a prime, let C(Lp) =
{x ∈ L : ∀ y ∈ L, xyp = ypx}. That is, the set C(Lp) consists of all those ele-
ments of L that commute with all pth powers. Since clearly C(L) is contained
in C(Lp), we generalize the setting of Theorem 1 by investigating diassociative
A-loops for which ker(f) is contained in C(Lp).
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Theorem 3. If L is a simple diassociative A-loop with ker(f) contained in C(Lp),
then either L has exponent p or L is, in fact, a group.

Proof: Since L is simple, ker(f) is either trivial or all of L. If ker(f) is trivial,
then by Theorem 1, L is a group. Otherwise, L = ker(f) is contained in C(Lp).
That is, for each x ∈ L, we have xp ∈ C(L). Thus, Lp, the subloop generated by
the pth powers of elements in L, is contained in C(L). Since L is an A-loop, Lp is
normal in L. Thus, Lp is either trivial or all of L. If Lp is trivial, L has exponent
p. Otherwise Lp = L ≤ C(L), i.e., L is commutative, and hence by Osborn’s
result, Moufang. And of course, simple commutative Moufang loops are groups.

�

Corollary 4. If L is a simple diassociative A-loop with ker(f) contained in
C(L2), then L is, in fact, a group.

Proof: Continuing from above, if L2 is trivial, then L is commutative (since
abab = 1, and this implies that ba = a−1b−1 = ab) and as above, a group. �

Note: Compare Corollary 4 with [2, Theorem 7].

3. Moufang A-loops

We recall two necessary conditions for a diassociative A-loop to be Moufang:

Theorem 5. If L is a Moufang A-loop, then

1. L/Nuc(L) is a commutative Moufang loop of exponent three, and
2. T is a homomorphism, i.e., T (x)T (y) = T (xy).

Proof: 1. [2, Theorem 5].
2. Theorem 1(2) above. �

We adopt the notation of Bruck and Paige, and let
U(x, y) := R(x)R(y)R(x)R(xyx)−1. Clearly a diassociative A-loop is Moufang if
U(x, y) = 1 for all x and y. Bruck and Paige ([1, 3.62]) managed to establish the
following useful identity involving U(x, y):

(3.1) T (x)T (y)T (x) = U(x, y)2T (xyx).

While they were able to exploit this identity in proving only one theorem ([1,
Theorem 3.7]), we now use (3.1) both in the proof of the sufficiency of the two
conditions in Theorem 5, as well as in generalizing Bruck’s and Paige’s above-
mentioned result ([1, Theorem 3.7]).

Theorem 6. If L is a diassociative A-loop for which both

1. L/Nuc(L) is a commutative Moufang loop of exponent three, and
2. T is a homomorphism,
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then L is Moufang.

Proof: To simplify notation in the proof, we adopt the shorthand notation
U = U(x, y). Since T is a homomorphism, L/C(L) is a group, hence Moufang.
Thus, since L/Nuc(L) is also Moufang, given z ∈ L, we must have zU = zc for
some c in both Nuc(L) and C(L). Since all cubes are nuclear, we have z3 = z3U =
(zU)3 = (zc)3 = z3c3. So c3 = 1. Notice that zU3 = (zc)U2 = (zc2)U = zc3 = z,
and so U3 = 1. But since T is a homomorphism, by (3.1) we have U2 = 1. And
thus U = 1 and L is Moufang. �

Clearly Theorems 5 and 6 combine to characterize Moufang A-loops:

Theorem 7. A diassociative A-loop L is Moufang if and only if both

1. L/Nuc(L) is a commutative Moufang loop of exponent three, and
2. T is a homomorphism.

If we weaken the requirement that T is a homomorphism, and balance this
by adding a condition introduced in §2, we obtain a second characterization of
Moufang A-loops.

Theorem 8. A diassociative A-loop L is Moufang if and only if

1. L/Nuc(L) is a commutative Moufang loop of exponent three,
2. T is a semihomomorphism, i.e., T (x)T (y)T (x) = T (xyx), and
3. ker(f) is contained in C(L2).

Proof: Necessity follows from Theorem 5. For sufficiency note that since both
L/Nuc(L) and L/ ker(f) are Moufang, given z ∈ L, we must have zU = zn for
some n in both Nuc(L) and ker(f). Since T is a semihomomorphism, by (3.1) we
have U2 = 1, and thus z = zU2 = (zn)U = zn2 and n2 = 1. Moreover, since all
cubes are nuclear, we have z3 = z3U = (zU)3 = znznzn. Of course, this implies
z2 = nznzn. Since ker(f) is contained in C(L2), and since n−1 = n, we have
z2n = nz2 = znzn. This in turn implies z = nz. So n = 1. And thus U = 1 and
L is Moufang. �

4. Central nilpotence

In this section we offer a generalization of Bruck’s and Paige’s theorem about
centrally nilpotent diassociative A-loops ([1, Theorem 3.7]), the only other theo-
rem on centrally nilpotent diassociative A-loops in the literature. First, a prepara-
tory lemma.

Lemma 9. If L is a 2-divisible, diassociative A-loop such that both T is a semi-
homomorphism and L/Z(L) is Moufang, then L is Moufang.

Proof: Given z ∈ L, and with the shorthand notation U , we have zU = zc for
some c ∈ Z(L). Thus z = zU2 = (zc)U = zc2, and hence c2 = 1. Finally, since L
is 2-divisible, c = 1 and U = 1. �
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Theorem 10. If L is a centrally nilpotent 2-divisible diassociative A-loop, and
if T is a semihomomorphism, then L is Moufang.

Proof: We proceed by induction on n, the nilpotence class of L. If n = 1, then
L is an abelian group. Assume n ≥ 2. Then L/Z(L) is a centrally nilpotent
2-divisible diassociative A-loop of nilpotency class n − 1. By induction, L/Z(L)
is Moufang. By Lemma 9, L is Moufang. �
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