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Covering dimension and differential inclusions

G. Anello

Abstract. In this paper we shall establish a result concerning the covering dimension of
a set of the type {x ∈ X : Φ(x)∩Ψ(x) 6= ∅}, where Φ, Ψ are two multifunctions from X

into Y and X, Y are real Banach spaces. Moreover, some applications to the differential
inclusions will be given.

Keywords: multifunction, Hausdorff distance, convex processes, covering dimension, dif-
ferential inclusion

Classification: 47H04, 26E25

Introduction

Very recently, in [10], B. Ricceri, improving a theorem of [9], has established the
following result:

Theorem A. Let X , Y be Banach spaces, Φ : X → Y a continuous, linear, sur-
jective operator and Ψ : X → Y a completely continuous operator with bounded
range. Then, one has

dim({x ∈ X : Φ(x) = Ψ(x)}) ≥ dim(Φ−(0)),

where “dim” means covering dimension.

In [9] and [10], he also presented several applications of this result.

The aim of the present paper is to extend Theorem A to the case where both
Φ and Ψ are two set-valued operators, dealing with the covering dimension of the
set

dim({x ∈ X : Φ(x) ∩Ψ(x) 6= ∅}).

Our main result is Theorem 1, with its variant Theorem 2.
Two applications to differential inclusions are also established.

Basic definitions and preliminary results

Let A, B be two nonempty sets. A multifunction F from A into B (briefly F : A →
2B) is a function from A into the family of all subsets of B. For every Ω ⊆ B and
every S ⊆ A, we put F−(Ω) = {x ∈ A : F (x)∩Ω 6= ∅}, F+(Ω) = {x ∈ A : F (x) ⊆
Ω} and F (S) = ∪x∈CF (x). Further, we put gr(F ) = {(x, y) ∈ A×B : y ∈ F (x)}
and gr(F ) will be called graph of F .



478 G.Anello

If A, B are topological spaces and F : A → 2B is a multifunction, we say that
F is lower semicontinuous (resp. upper semicontinuous) in A when F−(Ω) (resp.

F+(Ω)) is open in A for any open Ω ⊆ B. A multifunction F : A → 2B is called
continuous in A when it is both lower and upper semicontinuous in A.
Let (X, d) be a metric space, for any X1, X2 ⊆ X , put

dH(X1, X2) = max{ sup
x∈X1

inf
z∈X2

d(x, z), sup
z∈X2

inf
x∈X1

d(x, z)}.

The number (or eventually the symbol +∞) dH (X1, X2) is called Hausdorff dis-
tance between X1 and X2. Let (Y, ρ) be another metric space and let F be
a multifunction from X into Y with nonempty values. F is called lipschitzean
when there exists a real number k ≥ 0 such that ρH(F (x), F (z)) ≤ kd(x, z) for
any x, z ∈ X . If k < 1, F is called multivalued contraction.
Further, given two vector spacesX , Y , we say that a multifunction F : X → 2Y

is a convex process if it satisfies the following three conditions:

a) F (x) + F (y) ⊂ F (x+ y) for every x, y ∈ X ,

b) F (λx) = λF (x) for every λ > 0 and every x ∈ X ,

c) 0 ∈ F (0).

It is easily seen that a convex process is, in particular, a multifunction with
convex graph (in fact, its graph is a convex cone).
Finally, for a set S in a Banach space, we denote by dim(S) its covering di-

mension ([4, p. 42]). Recall that, when S is a convex set, the covering dimension
of S coincides with the algebraic dimension of S, this latter being understood as
∞ if it is not finite ([4, p.57]). Also, conv(S) will denote the convex hull of S.
Now, we prove some lemmas which will be used in order to prove the main

result.
The following lemma is a well known result but we prefer to state and prove it

for the sake of clearness and completeness.

Lemma 1. Let X , Y be topological spaces, let Φ : X → 2Y be a multifunction
with closed graph and let Ψ : X → 2Y be a multifunction with compact values.
Then, one has

{x ∈ X : x ∈ Φ−(Ψ(x))} = {x ∈ X : Φ(x) ∩Ψ(x) 6= ∅}.

Proof: Let x ∈ X such that Φ(x) ∩Ψ(x) 6= ∅, then x ∈ Φ−(Ψ(x)) ⊆ Φ−(Ψ(x)).

Vice-versa, let x ∈ Φ−(Ψ(x)) and let {xα}α∈D be a net in Φ
−(Ψ(x)) which

converges to x. For any α ∈ D, choose yα ∈ Φ(xα)∩Ψ(x). Since Ψ(x) is compact,
the net {yα}α∈D has a cluster point y which belongs to Ψ(x). Consequently,
the net {(xα, yα)}α∈D lies in gr(Φ) and (x, y) is a cluster point of it. Since
gr(Φ) is closed, it follows that (x, y) ∈ gr(Φ). Hence, y ∈ Φ(x) ∩ Ψ(x) and so
Φ(x) ∩Ψ(x) 6= ∅. �
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Let X be a real vector space and T be a subset of X . In the sequel, T ∗ will
denote the set:

{x ∈ T : for any y ∈ X there exists r > 0 such that x+ ρy ∈ T for any ρ ∈ R

with |ρ| < r}.
Let Y be another real vector space and let A be a convex subset of X ×Y . For

each y ∈ Y , we denote by Ay the set {x ∈ X : (x, y) ∈ A}.

Lemma 2. Let X , Y be real vector spaces and let A be a convex subset in X×Y .
Then, for any y1, y2 ∈ PY (A)

∗ one has dim(Ay1) = dim(Ay2).

Proof: Fix y1, y2 ∈ PY (A)
∗. Let n be a non negative integer such that n ≤

dim(Ay1). Choose n+ 1 affinely-independent points x1, . . . , xn+1 ∈ Ay1 and let
r be a positive real number such that, for each ρ ∈ R with |ρ| < r, one has
y2+ρ(y2−y1) ∈ PY (A). Since PY (A) is convex, then, for each λ ∈ [0, 1], we have

(1) λy1 + (1 − λ)(y2 + ρ(y2 − y1)) ∈ PY (A) for each ρ ∈ R with |ρ| < r.

Choose λ ∈]0, 1] such that 0 < 2λ−λ2

(1−λ)2
< r and put ρ = 2λ−λ2

(1−λ)2
. By (1), there

exists x ∈ Y such that

(x, λy1 + (1− λ)(y2 + ρ(y2 − y1))) ∈ A.

Since A is convex, it follows that

(λxi+(1 − λ)x, λy1 + λ(1 − λ)y1 + (1 − λ)2(y2 + ρ(y2 − y1))) ∈ A

for all i = 1, . . , n+ 1.

By observing that

λy1 + λ(1 − λ)y1 + (1 − λ)2(y2 + ρ(y2 − y1)) = y2,

one has λxi + (1 − λ)x ∈ Ay2 for all i = 1, . . , n + 1. Since λ > 0, the points
λx1 + (1 − λ)x, . . , λxn+1 + (1 − λ)x are affinely independent. Consequently, we
have dim(Ay1) ≤ dim(Ay2). By interchanging the roles of y1 and y2, it also
follows that dim(Ay1) ≥ dim(Ay2). Thus, dim(Ay1) = dim(Ay2). �

The following lemma gives a characterization of the lower semicontinuous mul-
tifunctions.

Lemma 3. Let X , Y be topological spaces and let F : X → 2Y be a multifunc-
tion. Then, F is lower semicontinuous in X if and only if, for any subset A of X ,
one has F (A) ⊆ F (A).

Proof: Let F be lower semicontinuous in X and fix A ⊆ X . Let y0 ∈ F (A).

By absurd, suppose that y0 /∈ F (A). Let x0 ∈ A such that y0 ∈ F (x0). Then,

y0 ∈ (Y \F (A)) ∩ F (x0). Consequently, there exists a neighborhood U of x0 in
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X such that (Y \F (A)) ∩ F (x) 6= ∅, for each x ∈ U . Fixing x ∈ U ∩ A, one has:

∅ 6= (Y \F (A)) ∩ F (x) ⊆ (Y \F (A)) ∩ F (A), which is absurd. Vice versa, suppose

F (A) ⊆ F (A) for any subset A of X and prove that, for any open Ω in Y , F−(Ω)

is open in X . Put C = Y \Ω, we have F−(Ω) = Y \F+(C). Now, if x ∈ F+(C),

one has F (x) ⊆ F (F+(C)) ⊆ F (F+(C)) ⊆ C = C, so x ∈ F+(C). Hence, F+(C)
is closed and F−(Ω) is open. �

Main result

Before proving our main result, we recall that, if X is a nonempty set and F :
X → 2X is a multifunction, x ∈ X is said fixed point of F when x ∈ F (x). We
shall denote by Fix(F ) the set of all fixed points of F .
We point out that the following theorem is an extension of Theorem 1 of [10]

where the same result was proved for single valued operator.

Theorem 1. Let X , Y be real Banach spaces, Φ : X → 2Y a lower semi-
continuous convex process with nonempty closed values such that Φ(X) = Y ,

Ψ : X → 2Y be a lower semicontinuous multifunction with nonempty closed con-
vex values such that Ψ(X) is bounded and Ψ(B) is relatively compact for every
bounded set B ⊆ X . Then, one has

dim({x ∈ X : Φ(x) ∩Ψ(x) 6= ∅}) ≥ dim(Φ−(0)).

Proof: Preliminarily, we suppose that dim(Φ−(0)) ≥ 1. Thanks to Theorem 2
of [8], the multifunction Φ has closed graph and maps open subsets of X into
open subsets of Y . Hence, denoting by BX (x, r) (resp. BY (y, r)) the closed ball
in X (resp. Y ) of center x (resp. y) and radius r > 0, there exists δ > 0 such

that BY (0, δ) ⊆ Φ(BX (0, 1)). Moreover, Ψ(X) being bounded, there exists ρ > 0

such that Ψ(X) ⊆ BY (0, ρ). Consequently, one has Ψ(X) ⊆ Φ(BX(0,
ρ
δ
)). Now,

we fix an open convex bounded subset A of X such that BX(0,
ρ
δ
) ⊆ A and put

K = Ψ(A). By hypotheses,K is compact. Further, we fix a positive integer n such
that n ≤ dim(Φ−(0)) and z ∈ K. Taking into account that PY (gr(Φ))

∗ = Y ,
by Lemma 2, we can choose n + 1 affinely-independent points uz,1, . . , uz,n+1

in Φ−(z) ∩ A. By Theorem 2 of [8], the multifunction y → Φ−(y) is lower

semicontinuous in Y . So is the multifunction y → Φ−(y) ∩ A. Moreover, its
values are convex and closed, and, if y ∈ K, one has Φ−(y) ∩ A 6= ∅. Hence, by
applying the classical Michael theorem ([6, p. 98]) to the restriction to K of the
latter multifunction, we obtain n+1 continuous functions fz,1, . . , fz,n+1 from K

into A such that, for any y ∈ K and i = 1, . . , n+ 1, one has

Φ(fz,i(y)) = y and fz,i(z) = uz,i.
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Now, for every i = 1, . . , n+ 1, fix a neighborhood Uz,i of uz,i in A such that, for
any choice of points wi ∈ Uz,i, one has that w1, . . , wn+1 are affinely independent.
Put

Vz =
n⋂

i=1

f−1
z,i (Uz,i),

Vz is a neighborhood of z in K. Since K is compact, there exist z1, . . , zp in K

such that K = ∪p
j=1Vzj

. At this point, for each y ∈ K, we put

F (y) = conv({fz,j(y) : j = 1, . . , p ; i = 1, . . , n+ 1}).

Since, for each y ∈ K, there exists j ∈ {1, . . , p} such that y ∈ Vzj
, that is

fz,i(y) ∈ Uzj ,i for all i = 1, . . , n+ 1, it follows that F (y) is a nonempty convex

compact subset of Φ−(y)∩A, with dim(F (y)) ≥ n. Further, F being a continuous
multifunction ([6, p. 86 e p. 89]), one has that F (K) is compact. So, put C =

conv(F (K)), C is compact. Moreover, by Lemma 3, one has Ψ(A) ⊆ Ψ(A) = K.
Hence, putting

G(x) = conv(F (Ψ(x)) for each x ∈ C,

one has, since C ⊆ A, thatG(x) ⊆ C. At this point, by observing thatG : C → 2C

is a lower semicontinuous multifunction with nonempty convex compact values
and with dim(G(x)) ≥ n for each x ∈ C, we deduce, by Proposition 2 of [2], that

dim({x ∈ C : x ∈ G(x)}) ≥ n.

Now, if x ∈ G(x), one has

x ∈ conv(F (Ψ(x)) ⊆ conv(Φ−(Ψ(x))) ⊆ Φ−(Ψ(x)).

Hence, by Lemma 1, we have Φ(x) ∩Ψ(x) 6= ∅. Consequently,

{x ∈ C : x ∈ G(x)} ⊆ {x ∈ X : Φ(x) ∩Ψ(x) 6= ∅}

and the conclusion follows from ([4, p. 220]).
If dim(Φ−(0)) = 0, by the above proof, we can deduce that {x ∈ X : Φ(x) ∩

Ψ(x) 6= ∅} is nonempty, hence the conclusion follows. �

A variant of Theorem 1 is the following:

Theorem 2. Let X , Y be real Banach spaces, Φ : X → 2Y a lower semicontinu-
ous multifunction with nonempty closed values, with convex graph and such that

Φ(X) = Y , and let Ψ : X → 2Y be a lower semicontinuous multifunction with

nonempty closed convex values and such that Ψ(X) is compact. Then, one has

dim({x ∈ X : Φ(x) ∩Ψ(x) 6= ∅}) ≥ dim(Φ−(0)).

Proof: Thanks to Theorem 2 of [8], the multifunction y → Φ−(y) is lower
semicontinuous. Moreover, one has

Ψ(X) ⊆ Y = Φ(X)

and K = Ψ(X) is compact.
At this point, the conclusion follows by observing that it is possible to repeat

the proof of Theorem 1 taking A = X . �
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Remark. If Φ is as in Theorem 2 and Ψ as in Theorem 1, it is an open problem
to establish if the following condition:

dim({x ∈ X : Φ(x) ∩Ψ(x) 6= ∅}) ≥ dim(Φ−(0))

holds.

Applications to differential inclusions

Now, we prove two theorems concerning the covering dimension of the solution
set of certain differential inclusions. We consider a free problem in Banach spaces.
The following result concerns the case of infinite dimensional Banach spaces. It
is an extension to differential inclusions of Theorem 2 of [10].

Theorem 3. Let I = [0, 1], E be a infinite dimensional real Banach space, F :

I×E → 2E be a lower semicontinuous multifunction, with nonempty closed values
and such that:

1) there exists L>0 such that dH(F (t, x), F (t, y)) ≤ L‖x − y‖ for any t ∈ I,
x, y ∈ E;

2) F (t, ·) is a convex process for every t ∈ I.

Finally, let f : I × E → E be a uniformly continuous function with relatively
compact range. Then, one has

dim{u ∈ C1(I, E) : u′(t) ∈ f(t, u(t)) + F (t, u(t)) for each t ∈ I} =∞.

Proof: Fix x0 ∈ E, by Theorem 2.1 of [7], the set

{u ∈ C1(I, E) : u(0) = x0, u′(t) ∈ F (t, u(t)) for each t ∈ I}

is nonempty. Then, if x1, . . , xn are n-linearly independent vectors in E and if
u1, . . , un are n-function in C1(I, E) such that

ui(0) = xi and u′i(t) ∈ F (t, ui(t)) for each t ∈ I, i = 1, . . , n,

it follows, in particular, that u1, . . , un are n-linearly independent functions in the
space C1(I, E). Consequently, since n is arbitrary, one has that the convex set

{u ∈ C1(I, E) : u′(t) ∈ F (t, u(t)) for each t ∈ I}

is infinite-dimensional.
Now, for every u ∈ C1(I, E), we put

Φ(u) = {ϕ ∈ C0(I, E) : ϕ(t) ∈ u′(t)− F (t, u(t)) for each t ∈ I}.
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As it has just been seen, one has dim(Φ−(0)) = ∞. Moreover, by condition 2)

we can deduce that Φ : C1(I, E)→ 2C
0(I,E) is a convex process. Further, condi-

tion 1) assures that gr(Φ) is closed in the space C1(I, E)×C0(I, E) equipped with
the product topology. Now, if h ∈ C0(I, E), by applying once more Theorem 2.1
of [7], we deduce that

Φ−(h) = {u ∈ C1(I, E) : u′(t) ∈ F (t, u(t))− h(t) for each t ∈ I}

is nonempty (and infinite-dimensional). Thus, Φ(C1(I, E)) = C0(I, E). Hence,
by the Robinson-Ursescu theorem ([1, p. 54]), Φ is lower semicontinuous.
Finally, put Ψ(u) = f(·, u(·)) for every u ∈ C1(I, E). Thanks to the Ascoli-

Arzela theorem, it is easily seen that Ψ : C1(I, E) → C0(I, E) is a continuous
function, with bounded range and it maps bounded sets into relatively compact
sets. At this point, the conclusion follows by applying Theorem 1 to Φ and Ψ.

�

If E = R
n, we obtain the following version of Theorem 3, which is an extension

to differential inclusions of Theorem 3 of [10]:

Theorem 4. Let I = [0, 1], F : I × R
n → 2R

n
be a lower semicontinuous

multifunction, with nonempty closed values and such that:

1) there exists L>0 such that dH(F (t, x), F (t, y)) ≤ L‖x − y‖ for any t ∈ I,
x, y ∈ R

n;

2) F (t, ·) is a convex process for any t ∈ I.

Finally, let f : I × R
n → R

n be a continuous bounded function. Then, one has

dim{u ∈ C1(I, Rn) : u′(t) ∈ f(t, u(t)) + F (t, u(t)) for each t ∈ I} ≥ n.

Proof: The proof is omitted since it is similar to the previous one. �

For other works concerning the topological dimension of the solution set of a
differential inclusion see also [5] and [3].
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