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Polynomial time bounded truth–table

reducibilities to padded sets

Vladiḿır Glasnák

Abstract. We study bounded truth-table reducibilities to sets of small information con-
tent called padded (a set is in the class f-PAD of all f -padded sets, if it is a subset of

{x10f(|x|)−|x|−1; x ∈ {0, 1}∗}). This is a continuation of the research of reducibilities to
sparse and tally sets that were studied in many previous papers (for a good survey see
[HOW1]). We show necessary and sufficient conditions to collapse and separate classes
of bounded truth-table reducibilities to padded sets. We prove that depending on two
properties of a function f measuring “holes” in its image, one of the following three
possibilities happen:

Rm(f-PAD) ( R1-tt(f-PAD) ( · · · ( Rbtt(f-PAD), or

Rm(f-PAD) = R1-tt(f-PAD) ( · · · ( Rbtt(f-PAD), or

Rm(f-PAD) = Rbtt(f-PAD).

Keywords: computational complexity, sparse set, padded set, reducibility

Classification: 68Q15

1. Introduction

The first polynomial time reducibilities were introduced by Cook [C1] (Turing
reducibility) and Karp (many-one reducibility) to delimit computationally hard
problems (NP-hard problems). The consequent research of reducibilities plays an
important role in structural complexity. For example, if one proves that two kinds
of reducibilities differ on NP , then NP 6= P because all polynomial time reducibil-
ities coincide on P (there is one trivial exception for many-one reducibility). This
is a motivation for comparison of various kinds of reducibilities that was started by
Ladner, Lynch and Selman [LLS1] who proved that many reducibilities differ on
DEXT . A bit different approach was initiated by Watanabe [W1] who compared
the completeness notions for various reducibilities on the class DEXT . This work
was followed by Buhrman, Homer, Spaan and Torenvliet ([BHT1], [BST1], sum-
marized in [B]). They compared various completeness notions on nondeterministic
exponential time complexity classes NEXT , EXPTIME and NEXPTIME .

The author gratefully acknowledges the support of the Grant Agency of the Czech Republic
under Grant 201/98/1451.
This paper was written while the author was studying at Department of Theoretical Com-

puter Science, Faculty of Mathematics and Physics, Charles University, Prague.
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The problem whether any two reducibilities coincide on NP is open. The first
approach to this problem mentioned above investigates reducibilities to “more
powerful” classes (exponential time). Another approach is to study reducibilities
to sets of small information content (or “less powerful sets”). A typical class of
such sets is SPARSE , the class of all sparse sets (see e.g. [BDG1]). An intensive
research has been devoted to the classRT(SPARSE) of all sets that are polynomial
time Turing reducible to sparse sets (formal definitions of this and other classes
from Introduction are given later). Karp and Lipton [KL1] proved that if NP ⊆
RT(SPARSE ), then PH = Σ

P
2 , Mahaney [M1] proved that NP = P follows from

the existence of a sparseNP-hard problem for many-one reducibility. Ogiwara and
Watanabe [OW1] proved the same result for bounded truth-table reducibility.
Arvind et al. [AHH+1] and Ranjan and Rohatgi [RR1] resolved the case for
conjunctive truth-table reducibility.
The previous results show that in certain cases weaker reducibilities afford

stronger results. Book and Ko begins investigation of subclasses of RT(SPARSE)
— classes of sets reducible to sparse sets under weaker polynomial time reducibil-
ities. This research led to many results about large hierarchy of classes (see, e.g.
[B1], [BHT1], [BK1], [K2], [S1], [S2], some of the results are mentioned below).
From the beginning, reducibilities to sparse sets were compared with reducibil-

ities to tally sets because tally sets are much simpler. In spite of this, there are
results where sparse and tally sets have the same properties. Important two ex-
amples of this concern classes of sets conjunctively and disjunctively truth-table
reducible to sparse and tally sets. Although Ko [K2] proved thatRdtt(SPARSE) 6=
Rdtt(TALLY), Buhrman, Longpré and Spaan [BLS] proved that Rctt(SPARSE) =
Rctt(TALLY).
Instead of a tally set one can consider a set padded with a long “tail” of zeros,

we call such sets padded:
Definition 1. Let f be a nondecreasing time constructible function with f(n) >

n. A set A is f -padded, if A ⊆ {x10f(|x|)−|x|−1;x ∈ Σ∗}. The class of all
f -padded sets is denoted by f -PAD.

It is easy to prove that every 2n-padded set is m-reducible to a tally set and
every tally set is m-reducible to a 2n-padded set (see [G1]). Hence from the view
of polynomial time reducibilities, 2n-padded sets are equivalent to tally sets.
Special cases of padded sets and their relation to f -sparse sets (sets with

O(f(n)) words of length n) were studied in [H1], [HIS1], [A1] and [G1]. Hartmanis
[H1] proved that NP−P contains a sparse set iff it contains a tally (or, equivalently,
2n-padded) set. Glasnák [G1] proved that NP − P contains an nO(logn)-sparse

set iff it contains a 2O(
√

n)-padded sets. Surprisingly, Allender [A1] constructed

a relativisation such that an analogous result for log-sparse and 22
n
-padded sets

does not hold i.e. there is an oracle A such that NPA − PA contains a log-sparse
set but no 22

n
-padded set. The result is based on the fact that sets with census

function f(n) ∈ Ω(n) have a variant of Kolmogorov complexity KU depending on
f (the greater f the greater KU ) while for sets with census function f(n) ∈ o(n)
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is KU approximately the same independently on f . Hence the result shows a
difference between log-sparse and sparse sets.
The aim of this paper is to classify functions f by the behaviour of bounded

reducibilities to f -padded sets. We show that for some functions f , bounded
truth-table reducibilities to f -padded sets collapse while for other functions these
reducibilities create a hierarchy similar to the boolean hierarchy. We give a full
characterization of the behaviour of bounded reducibilities to f -padded sets de-
pending on f . As a consequence we obtain that 2n-padded sets have different
properties than 22

n
-padded sets.

For any unbounded nondecreasing function f , define f I(n) = min{m; f(m) ≥
n} (because f I is a generalization of Inverse function). Define fUP(n) = f(f I(n))

and f2UP(n) = f(2f I(n)). Note that fUP(n) is the smallest value in the image
of f greater than or equal to n. Moreover, for every n, f2UP(n) ≥ fUP(n).
We prove the following results:

Theorem 2. Let f be a nondecreasing time constructible function with f(n) > n
such that fUP(n) > p(n) infinitely often for every polynomial p. Then

Rm(f -PAD) ( R1-tt(f -PAD) and

for every k > 0, Rk-tt(f -PAD) ( Rk+1-tt(f -PAD) ( Rbtt(f -PAD).

Moreover, there are sets A, B ∈ Rm(f -PAD) such that A ∪ B /∈ Rbtt(f -PAD)
hence Rbtt(f -PAD) is not closed under union.

Theorem 3. Let f be a nondecreasing time constructible function with f(n) > n
such that fUP(n) ≤ p(n) for some polynomial p and f2UP(n) > q(n) infinitely
often for every polynomial q. Then Rm(f -PAD) = R1-tt(f -PAD), Rbtt(f -PAD)
is the boolean closure of Rm(f -PAD) and for every k > 0,

Rk-tt(f -PAD) ( Rk+1-tt(f -PAD) ( Rbtt(f -PAD).

Theorem 4. Let f be a nondecreasing time constructible function with f(n) > n
such that f2UP(n) ≤ p(n) for some polynomial p. Then for every k > 0,

Rm(f -PAD) = Rk-tt(f -PAD) = Rbtt(f -PAD)

and Rm(f -PAD) is closed under boolean operations.

Note that the theorems are “complementary” — for every nondecreasing func-
tion f , either fUP(n) is infinitely often greater than every polynomial or it is less
than some polynomial. Similarly, either f2UP(n) is infinitely often greater than
every polynomial or it is less than some polynomial.
Another possible view on these results is the following. If we do not consider the

“tail” of an f -padded string (because it carries very small amount of information),
then we obtain reducibilities with bounded length of query: Rred(f -PAD) = {A;
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there exists a ≤P
red-reducibility from A such that every queried string y has the

length bounded by f I(p(n))− 1 where n is the length of the input and p is some
polynomial}. Hence our results compare classes of sets which are reducible to
some set by bounded truth table reducibilities such that every queried string has
the length bounded by f I(p(n))− 1.
The last section investigates functions. We delimit areas of functions that sat-

isfy the assumptions of the individual theorems and show some examples of such
functions. Studying a polynomial bound on fUP, we prove that both cases (fUP is
or is not polynomially bounded) occur for appropriate functions f between poly-
nomials and double exponential. Similarly, f2UP may be polynomially bounded
or unbounded for f between polynomials and cnc2

1 for some constants c1, c2.

2. Preliminaries

Let f be a function on natural numbers. We use the “big O” notation: O(f) =
{g; there exists some constant c such that g(n) ≤ cf(n) for almost every n}. Our
computation model is a multi-tape Turing machine with the alphabet Σ = {0, 1}.
We distinguish transducers that compute mappings on Σ∗ and acceptors that
compute characteristic functions of subsets of Σ∗. For a transducer F and a
string x, let F (x) denote the output of F on x. We say that a function f is

computable if there is a transducer F such that F (1n) = 1f(n). If, in addition, F
works in time O(f(n)) we say that f is time constructible.
The length of a string x is denoted by |x|.
If n is a natural number, then bin(n) is its binary expansion.
The integer part of a real number δ is denoted by ⌊δ⌋.
For a set A ⊆ Σ∗, define A = Σ∗ − A, A≤n = {x ∈ A; |x| ≤ n} and A=n =

{x ∈ A; |x| = n}.
The characteristic function of a set A is denoted by χA.
To code tuples we apply a standard selfdelimiting code from Kolmogorov com-

plexity (see e.g. [LV1]). For a string x = d1 . . . dn where di is the i-th letter of
x, define l(x) = 1n0d1d2 . . . dn. The code of an n-tuple of strings x1, . . . , xn is
defined by

〈x1, . . . , xn〉 = l(bin(|x1|))x1l(bin(|x2|))x2 . . . l(bin(|xn−1|))xn−1xn.

Now |〈x1, . . . , xn〉| = 3(n − 1) + |xn| +
∑n−1

i=1 (2⌊log |xi|⌋ + |xi|). Note that an
n-tuple can be unambiguously decoded only if n is known.
Let k be a natural number and let f be a nondecreasing time constructible

function with f(n) > n. For strings x1, . . . xk, define

[x1, . . . , xk]f = 〈x1, . . . , xk〉01f(|〈x1,...,xk〉|)−|〈x1,...,xk〉|−1.

Note that this definition does not require f to be time constructible or nonde-
creasing but we use it only for such functions. On the other hand, the condition
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f(n) > n is necessary. Therefore we define a useful shortcut. A function is called
padding if it is a nondecreasing time constructible function with f(n) > n. Note
that this definition differs from the common definition of padding function that
characterizes certain hard problems ([BH1]).
Let f be a padding function. For a set A ⊆ Σ∗, define [A]f = {[x]f ; x ∈ A}.
Define the inverse function of [. . . ]f by

[y]−f =

{
x if y = [x]f ;

undefined otherwise.

2.1 Polynomial time reducibilities.

A set A is polynomial time many-one (shortly m) reducible to a set B (we

write A ≤P
m B), if there is a transducer F working in polynomial time such that

for every x, F (x) is defined and x ∈ A iff F (x) ∈ B.
Let k > 0 be a natural number. A k-truth-table condition is a k + 1-tuple

〈α, y1, . . . , yk〉, where y1, . . . , yk are strings and α is a boolean function on k
variables given by its table.
A set A is k-truth-table (shortly k-tt) reducible to a set B (we write A ≤P

k-tt B)
if there exists a transducer F working in polynomial time which on every input
x computes a k-tt condition such that x ∈ A iff F (x) = 〈α, y1, . . . , yk〉 and
α(χB(y1), . . . , χB(yk)) = 1.

Note that if A, B are arbitrary sets, then A ≤P
1-tt B iff there exists a transducer

F working in polynomial time such that x ∈ A iff (F (x) = 〈1, y〉 and y ∈ B or
F (x) = 〈0, y〉 and y /∈ B).

A set A is bounded truth-table (btt) reducible to a set B (we write A ≤P
btt B),

if A ≤P
k-tt B for some k.

A set A is Turing (T) reducible to a set B (we write A ≤P
T B), if there exists

some polynomial time oracle Turing machineM such that x ∈ A iffMB accepts x.
Let red be any of the above defined reducibilities and C be a class of sets.

Define

Rred(C) = {A; there exists a set B ∈ C such that A ≤P
red B}.

Remark 5. Let f be a padding function and red be an arbitrary reducibility of the
above defined ones. Note that every set in Rred(f -PAD) is red-reducible to a set
[B]f for B 6= Σ∗. Therefore if a set A is in Rred(f -PAD), then A is red-reducible
to a set B via reducibility which queries the set B only for f -padded strings.
Precisely,
(1) A ∈ Rm(f -PAD) iff A is m-reducible to a set [B]f via F such that for every
string x, the string F (x) is f -padded;

(2) A ∈ Rk-tt(f -PAD) iff A is k-tt-reducible to a set [B]f via F such that for
every string x, we have F (x) = 〈α, y1, . . . , yk〉 for some boolean function α
and f -padded strings y1, . . . , yk;
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(3) A ∈ Rbtt(f -PAD) iff there is a k such that A is k-tt-reducible to a set [B]f
via F such that for every string x, we have F (x) = 〈α, y1, . . . , yk〉 for some
boolean function α and f -padded strings y1, . . . , yk;

(4) A ∈ RT(f -PAD) iff A is T-reducible to a set [B]f via M such that for every
string x, the set of queries to the oracle contains only f -padded strings.

Proposition 6. The class Rm(f -PAD) is closed under complement for every
padding function f .

Proof: Let A, B be sets such that A ≤P
m [B]f via F . By Remark 5, assume that

the image of F is a subset of f -PAD. Now F reduces A to [B]f . �

The closure under complement is the main difference between Rm(TALLY)
(Book and Ko [BK1] proved that this class is closed under complement) and
Rm(SPARSE) (Book and Ko [BK1] proved that this class is not closed under
complement).
Köbler [K3] proved the following characterization of the class of sets btt-

reducible to a set A.

Theorem 7 ([K3]). Let A be a set. The class {B; B ≤P
btt A} is exactly the

boolean closure of {B; B ≤P
m A}.

Let us compare this result with Theorem 2, where it is stated that Rbtt(f -PAD)
is not closed under boolean operations. In Theorem 2 we have Rbtt(f -PAD) where
f -PAD contains many sets while in Theorem 7 we have Rbtt({A}) for one set A.
This causes the difference between the conclusions.
In order to diagonalize we need sequences of transducers and acceptors satis-

fying certain properties. They are described in the following proposition.

Proposition 8. There is a sequence {Fi}i∈N of transducers and a sequence

{Mi}i∈N of acceptors with oracle such that

(a) for every i, Fi and Mi works in time ni + i;
(b) for every transducer F working in polynomial time there are infinitely
many i such that Fi computes the same mapping;

(c) for every oracle acceptorM working in polynomial time there are infinitely

many i such that for every oracle A and every string x, MA accepts x iff
MA

i accepts x.

The sequences can be easily constructed (see a basic literature on structural
complexity, e.g. [BDG1]).

3. Reducibilities to padded sets

This section contains the proofs of main results. First, we prove technical
lemmas necessary later. Next, we prove theorems that together imply the main
results.
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3.1 Technical lemmas.

The first lemma states the properties of f I . Observe that if f is an increasing
function, then f I coincides with f−1 whenever it is defined. Hence f I is a kind
of generalization of inverse function.

Lemma 9. Let f : N → N be a nondecreasing unbounded function. Then f I is

a nondecreasing unbounded function and

f I(f(n)) ≤ n < f I(f(n) + 1), n ≤ fUP(n) for all n

and f(f I(n)− 1) < n for all n with f I(n) > 0.

Proof: All of the inequalities follow just from the definition of f I . �

Lemma 10. Let f be a padding function and n be a natural number. Then the
number of f -padded strings of the length at most n is at most

2f
I(n+1) − 1.

Proof: Let z be a string with |[z]f | ≤ n. Then f(|z|) ≤ n. By Lemma 9,

|z| < f I(f(|z|) + 1) ≤ f I(n + 1). Thus |z| ≤ f I(n + 1) − 1. The number of the
strings with this property is 2f

I(n+1) − 1. �

The following simple lemma shows that f I of every padding function f is
computable in polynomial time.

Lemma 11. Let f be a padding function. Then there exists a Turing machine
working in time O(n2) computing f I(n).

Proof: On an input 1n, we search for the smallest i such that f(i) ≥ n. Since
f(n) > n this algorithm works in O(n2). �

3.2 A polynomial bound on fUP.

Here, we investigate functions f according to whether they satisfy or do not
satisfy the property fUP(n) ≤ p(n) for a polynomial p. Note that fUP is the
smallest number in the image of f that is greater than or equal to n. Hence
fUP(n) ≤ p(n) means that “holes” in the image of f are not too big — they are
polynomially bounded.

Proposition 12. Let f be a padding function such that fUP(n) ≤ p(n) for
some nondecreasing polynomial p and all n. Then for any fixed m, there is some
nondecreasing polynomial q such that

f(f I(n) +m) ≤ q(n).

Proof: The statement holds for m = 0. Assume that it holds for m − 1. Then
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f(f I(n) +m − 1) ≤ q(n) =⇒
f(f I(n) +m − 1) + 1 ≤ q(n) + 1 =⇒ by Lemma 9

f I(n) +m − 1 < f I(f(f I(n) +m − 1) + 1) ≤ f I(q(n) + 1) =⇒
f I(n) +m ≤ f I(q(n) + 1) =⇒

f(f I(n) +m) ≤ f(f I(q(n) + 1)) ≤ p(q(n) + 1).

�

Proposition 12 says that a nonzero additive constant m does not break a poly-
nomial bound on f(f I(n) +m). It follows that if f is a padding function with
fUP(n) ≤ p(n) for some polynomial p then for every constant a there exists a
polynomial q such that for every f -padded string [x]f and every string z with
|z| ≤ a, we have |[zx]f | ≤ q(|[x]f |). Therefore, we can add arbitrary information
of a constant length (z) to x and a new f -padded string ([zx]f ) is of a polynomially
bounded length. This fact is applied in the following theorem.

Theorem 13. Let f be a padding function with fUP(n) ≤ p(n) for some poly-
nomial p and all n. Then the following statements hold:

(1) Rm(f -PAD) = R1-tt(f -PAD).
(2) For every k > 0, if A, B ∈ Rk-tt(f -PAD), then A ∪ B ∈ R2k-tt(f -PAD).

Proof: Without loss of generality, let p be a nondecreasing polynomial with
fUP(n) ≤ p(n).

Statement (1). Here, the additional information has the length 1 and it carries
a boolean function of one variable from 1-tt reducibility (it may be either identity
or negation).

Let A ≤P
1-tt [B]f via some transducer F working in polynomial time (say p2(n)

for some nondecreasing polynomial p2) such that for every x, F (x) = 〈y, [z]f 〉,
where y ∈ Σ, z ∈ Σ∗ and x ∈ A iff either (y = 1 and [z]f ∈ [B]f ) or (y = 0 and
[z]f /∈ [B]f ) (the transducer exists by Remark 5).
Define a mapping u : Σ∗ → Σ∗ by u(x) = [yz]f where F (x) = 〈y, [z]f 〉.
Note that |u(x)| ≤ fUP(p2(|x|) + 1) thus |u(x)| ≤ q(|x|) for some polynomial

q depending on p and p2. Since f is time constructible, u is computable in
polynomial time. In addition, x ∈ A iff u(x) ∈ {[1x]f ; x ∈ B} ∪ {[0x]f ; x /∈ B}.
Hence A ∈ Rm(f -PAD).

Statement (2). Here, additional information is used to differ the elements of C
from the elements of D as follows.
Let A ≤P

k-tt [C]f via F and B ≤P
k-tt [D]f via G such that F and G query the

oracle only for f -padded strings (by Remark 5). Let

E = 1C ∪ 0D = {1x; x ∈ C} ∪ {0x; x ∈ D}.
Define a 2k-tt reducibility from A ∪ B to [E]f .
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For an input x if F (x)=〈α1, [y1]f , . . . , [yk]f 〉 andG(x)=〈α2, [yk+1]f , . . . , [y2k]f 〉
then output

〈α, [1y1]f , . . . , [1yk]f , [0yk+1]f , . . . , [0y2k]f 〉,
where α(x1, . . . , x2k) = α1(x1, . . . , xk) ∨ α2(xk+1, . . . , x2k). For 1 ≤ i ≤ k, the
length of [1yi]f is polynomially bounded similarly to the proof of the first state-
ment. Therefore the output can be computed in polynomial time. Hence A ∪ B
is 2k-tt-reducible to E. �

Lemma 14. Let f be a padding function such that fUP(n) > p(n) infinitely
often for every polynomial p. Then there exists an infinite sequence n0, n1, n2, . . .
such that for every i > 0,

ni > f I(ni) = f I(ni
i + i+ 1) and f(f I(ni)− 1) > f(f I(ni−1)− 1).

Proof: We give a construction of such a sequence. Define n0 = 1. Let i > 0.
Given a sequence n0, . . . , ni−1 satisfying the conditions, we construct the next
member of the sequence. Since for every a, fUP(n) > na + a + 1 for infinitely

many n, there exists a number ni such that fUP(ni) > ni
i+i+1 and f(f I(ni)−1) >

f(f I(ni−1)− 1). By Lemma 9,

f I(ni) ≥ f I(f(f I(ni))) ≥ f I(ni
i + i+ 1).

Since f I is nondecreasing, f I(ni) = f I(ni
i + i + 1). Besides, since f(n) > n,

ni > f I(ni). �

Theorem 15. Let f be a padding function with fUP(n) > p(n) infinitely often
for every polynomial p. Then the following statements hold:

(1) Rm(f -PAD) ( R1-tt(f -PAD).
(2) There are sets A, B ∈ Rm(f -PAD) such that A ∪ B /∈ RT(f -PAD).

Proof: For f -padded sets C, D, define

L1(C) = {1xy; f I(|1xy|) ≥ 1 and [x]f ∈ C and |x| = f I(|1xy|)− 1}
L0(D) = {0xy; f I(|0xy|) ≥ 1 and [x]f ∈ D and |x| = f I(|0xy|)− 1}.

Note that L1(C) ≤P
m C, L0(D) ≤P

m D and L(C) = L1(C) ∪ L0(C) ≤P
1-tt C.

Statement (1). We construct an f -padded set B such that L(B) /∈ Rm(f -PAD).
Let {ni} be the sequence from Lemma 14. The set B is constructed in stages.

Stage 0. Let B = ∅.
Stage i > 0. By Lemma 14, ni > f I(ni) = f I(ni

i + i+ 1) and f(f I(ni)− 1) >
f(f I(ni−1)− 1).
Let {Fi} be the sequence from Proposition 8. We diagonalize against Fi as a

candidate for a reduction of L(B) to an f -padded set on the strings of the length
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ni in L(B). In this stage, we insert into B only strings of the length f(f I(ni)−1)
and ni is chosen such that this insertion does not change L(B) strings of length
nj for 0 < j < i.
If there exists a string x of the length ni such that Fi(x) is not f -padded, then

go to the next stage (recall Remark 5).
Now, assume that for every string x of the length ni, Fi(x) is f -padded. By

our assumptions on Fi, the length of Fi(x) is at most ni
i + i. By Lemma 10,

|{Fi(x); |x| = ni}| ≤ 2f
I(ni

i+i+1) − 1 = 2fI(ni) − 1.

Therefore there is some z such that the set C = F−1
i (z) ∩ Σni has cardinality at

least

|C| ≥ 2ni

2f
I(ni) − 1

> 2ni−fI(ni).

Since there are 2ni−fI (ni) strings of the length ni with the same prefix of the
length f I(ni), the set C contains at least two strings with different prefixes of

this length, say z1x1y1 and z2x2y2 where z1x1 6= z2x2, |z1x1| = |z2x2| = f I(ni)
and |z1| = |z2| = 1. If z1 = z2 then insert [x1]f into B. If z1 6= z2 then

keep B unaltered. In both cases, z1x1y1 ∈ L(B) iff z2x2y2 ∈ L(B). Since
Fi(z1x1y1) = Fi(z2x2y2), Fi cannot reduce L(B) to any f -padded set.

Statement (2). We claim that for any number n with f I(n) ≥ 1 and for all
subsets C, C′, D, D′ of ΣfI (n)−1,

(L1([C]f )∪L0([D]f ))∩Σn = (L1([C
′]f )∪L0([D

′]f ))∩Σn iff C = C′ and D = D′.

The implication from right to left is clear. To prove the opposite implication,
it is sufficient to prove that the left equality implies C ⊆ C′ because the rest
of the proof follows from symmetry. If x ∈ C, then for every y ∈ Σn−fI(n),
1xy ∈ L1([C]f ). Since no string beginning with 1 is in L0([D

′]f ) we have 1xy ∈
L1([C

′]f ) for every y ∈ Σn−fI (n). Hence x ∈ C′ and thus C ⊆ C′. The claim is
proved.
Let {Mi} be a sequence from Proposition 8.
We diagonalize against all T-reducibilities and construct sets C, D such that

L1([C]f ) ∪ L0([D]f ) is not T-reducible to any f -padded set.
Let {ni} be the sequence from Lemma 14.
The construction of C and D is made in stages.

Stage 0. Let C = D = ∅.
Stage i > 0. We diagonalize against T-reducibility via Mi. By Lemma 14,

ni > f I(ni) = f I(ni
i + i+ 1) and f(f I(ni)− 1) > f(f I(ni−1)− 1).

In this stage we insert into sets C, D some strings of the length f I(ni)−1 such
that L1([C]f )∪L0([D]f ) will not be Turing reducible to any f -padded set viaMi.
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Note that ni is chosen such that it does not change any computation considered
in the previous stages.
Consider all strings of the length ni. If there is a string of the length ni such

that the computation of Mi on x (with an oracle) queries the oracle for a not
f -padded string, then recall Remark 5 and go to the next stage.
Otherwise, since Mi works in time ni

i + i, the computation of Mi with an
oracle [A]f on an input of the length ni is unambiguously determined by the

set ([A]f )≤ni
i+i. By Lemma 10, there exist at most 2

2f
I (ni

i
+i+1)−1 = 22

fI(ni)−1

f -padded sets containing strings of the length at most ni
i + i. Since Mi and

([A]f )≤ni
i+i unambiguously determine the set of accepted strings of the length

ni, there exists at most 2
2f

I (ni)−1 subsets L of Σni with L = Σni ∩ {x; M [A]f
i

accepts x} for some set A.

There are 22
fI(ni)−1 subsets of ΣfI (ni)−1, therefore there are

(

22
fI (ni)−1

)2

= 22
fI (ni)

different pairs of sets (C′, D′) such that C′, D′ ⊆ ΣfI (ni)−1. Thus there are sets
C′, D′ such that for all sets A,

(L1([C
′]f ) ∪ L0([D

′]f )) ∩ Σn 6= {x; M [A]f
i accepts x}.

Now let C = C ∪ C′, D = D ∪ D′. Note that ni is chosen such that

(L1([C]f ) ∪ L0([D]f )) ∩Σni = (L1([C
′]f ) ∪ L0([D

′]f )) ∩ Σni .

Therefore the diagonalization on Mi succeeds. �

If fUP(n) > p(n) infinitely often for every polynomial p, then it is possible
to diagonalize. Therefore the possibility to add an information of a constant
length to every f -padded string without more than polynomial increase is neces-
sary and sufficient condition for Rm(f -PAD) = R1-tt(f -PAD) and for closure of
Rbtt(f -PAD) under union.

3.3 A polynomial bound on f2UP.

Now we turn attention to the second condition — f2UP(n) ≤ p(n) for some
polynomial p. Similarly to the first condition, this is a measure of “holes” in the
image of f but more powerful than the first one and harder to imagine.

Proposition 16. Let f be a padding function such that, for some real number
ǫ > 0 and some nondecreasing polynomial p,

f(⌊(1 + ǫ)f I(n)⌋) ≤ p(n).
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Then for every real number δ ≥ 1, there is some nondecreasing polynomial q such
that

f(⌊δf I(n)⌋) ≤ q(n).

Proof: The statement holds for every number less or equal to 1 + ǫ. Assume
that it holds for

√
δ. Then

f(⌊δ 12 f I(n)⌋) ≤ q(n) =⇒
⌊δ 12 f I(n)⌋ < f I(f(⌊δ 12 f I(n)⌋) + 1) ≤ f I(q(n) + 1) =⇒
⌊δf I(n)⌋ ≤ ⌊δ 12 (⌊δ 12 f I(n)⌋+ 1)⌋ ≤ ⌊δ 12 f I(q(n) + 1)⌋ =⇒

f(⌊δf I(n)⌋) ≤ f(⌊δ 12 f I(q(n) + 1)⌋) ≤ q(q(n) + 1).

Hence it also holds for all δ. �

Similarly to Proposition 12, now the constant factor δ does not break poly-
nomial bound on f(δf I(n)). In particular, if f is a padding function with
f2UP(n) ≤ p(n) for some polynomial p then for every constant a there exists
a polynomial q such that for every f -padded string [x]f and every string z with
|z| ≤ a|x| we have |[z]f | ≤ q(|[x]f |). Therefore, instead of x we can use a con-
stantly longer information (z) and a new f -padded string ([z]f ) is of a polyno-
mially bounded length. This is much greater information than in the first case,
hence the results are more powerful than that ones for the first condition.

Theorem 17. Let f be a padding function such that f2UP(n) ≤ p(n) for some
polynomial p. Then the class Rm(f -PAD) is closed under union.

Proof: Let A ≤P
m [C]f via F and B ≤P

m [D]f via G such that for every string x,
both values F (x) and G(x) are f -padded (by Remark 5). Define

E = {[x, y]f ; x ∈ C or y ∈ D}.
Now, define a mapping u : Σ∗ → Σ∗ by

u(x) = [[F (x)]−f , [G(x)]−f ]f .

Now, for every x, if x ∈ A ∪ B, then either [F (x)]−f ∈ C or [G(x)]−f ∈ D thus
u(x) ∈ E. Similarly, if x /∈ A ∪ B, then u(x) /∈ E. Hence u reduces A ∪ B to E
and it suffices to prove that u(x) can be computed from x in polynomial time.
There exists some nondecreasing polynomial p1 such that |F (x)| < p1(|x|) − 2
and |G(x)| < p1(|x|) − 2 for every x. By Lemma 10 and Proposition 16,

|u(x)| ≤ |[[F (x)]−f , [G(x)]−f ]f | ≤
f(|[F (x)]−f |+ |[G(x)]−f |+ 2⌊log(|[F (x)]−f |)⌋+ 3) ≤

f(3 + 2f I(p1(|x|)− 2) + 2⌊log f I(p1(|x|))⌋) ≤ f(3f I(p1(|x|))) ≤ q(|x|)
for some polynomial q. Hence the length of u(x) is polynomially bounded. Since
f is time constructible, u(x) is computable in polynomial time. �
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Lemma 18. Let f be a padding function such that for every polynomial p,
f2UP(n) > p(n). Then for every natural number a > 0, there is an infinite
sequence n0, n1, n2, . . . such that

⌊ 12af I(n0)⌋ ≥ 2a

a +
a+1

a ⌊log a⌋+ 2a+1
a

and for every i > 0,

ni ≥ (a+ 1)f I(ni),

⌊(1 + 1
2a )f

I(ni)⌋ ≥ f I(ni
i + i+ 1) and

f(f I(ni)− 1) > f(f I(ni−1)− 1).

Proof: If there is an ǫ′ > 0 and a polynomial p1 such that f(⌊(1 + ǫ′)f I(n)⌋) ≤
p1(n), then, by Proposition 16, f2UP(n) ≤ q(n) for some polynomial q. Therefore,

for every ǫ′ > 0 and every polynomial p1, f(⌊(1 + ǫ′)f I(n)⌋) > p1(n) infinitely
often.

Let a > 0 be a fixed natural number. By Lemma 9, f I is unbounded hence there
exists n0 satisfying the first condition. Given a sequence n0, . . . , ni−1 satisfying
all the conditions, we show how to choose ni.

Let m ≥ (a+ 1)2 + a+ 1 be a number such that

f(⌊(1 + 1
2a )f

I(m)⌋) > m2i + i+ 1 and f(f I(m)− 1) > f(f I(ni−1)− 1).

Let ni = (a+ 1)
2m + a + 1. Then the third inequality holds because f I is

nondecreasing. Moreover,

(1) f(⌊(1 + 1
2a )f

I(ni)⌋) ≥ f(⌊(1 + 1
2a )f

I(m)⌋) >

(m · m)i + i+ 1 ≥ (((a+ 1)2 + a+ 1)m)i + i+ 1 ≥ ni
i + i+ 1.

Hence, by Lemma 9,

⌊(1 + 1
2a )f

I(ni)⌋ ≥ f I(f(⌊(1 + 1
2a )f

I(ni)⌋)) ≥ f I(ni
i + i+ 1).

Now, assume that ni < (a+ 1)f I(ni). Then, by (1) and Lemma 9,

ni > f(f I(ni)− 1) ≥ f( ni
a+1 − 1) = f((a+ 1)m) ≥ f((a+ 1)f I(m)) ≥

f(⌊(1 + 1
2a )f

I(m)⌋) ≥ ni
i + i+ 1.

This is a contradiction. Thus ni ≥ (a + 1)f I(ni) and all the conditions are
satisfied. �
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Theorem 19. Let f be a padding function such that f2UP(n) > p(n) infinitely
often for every polynomial p. Then the following statements hold:

(1) There are sets A, B ∈ Rm(f -PAD) such that A ∪ B /∈ Rm(f -PAD).
(2) For every k > 0, Rk-tt(f -PAD) ( Rk+1-tt(f -PAD).

Note that Theorem 15 has stronger assumption and statement (2) than state-
ment (1) of Theorem 19.

Proof: Statement (1). For f -padded sets C, D, define

L1(C) = {xy; f I(|xy|) ≥ 1 and [x]f ∈ C and |x| = f I(|xy|)− 1}
L2(D) = {yx; f I(|yx|) ≥ 1 and [x]f ∈ D and |x| = f I(|yx|) − 1}.

A reducibility u from L1(C) to C works as follows. On an input z compute

n = f I(|z|) − 1 (by Lemma 11). For n = −1, let u(z) be a string which is not
f -padded and for n ≥ 0, let x be the first n letters of z and let u(z) = [x]f . Since

|[x]f | = f(f I(|xy|) − 1) < |xy|, u(z) is computable in polynomial time. Thus

L1(C) ≤P
m C. Similarly, L2(D) ≤P

m D.
We construct sets C, D such that L1(C) ∪ L2(D) is not m-reducible to any

f -padded set. Let {Fi} be the sequence of transducers from Proposition 8.
Let {ni} be the sequence from Lemma 18 for a = 1. The construction is made

in stages.

Stage 0. Let C = D = ∅.
Stage i > 1. We diagonalize against Fi on strings of length ni in L1(C)∪L2(D).

It follows from Lemma 18 that ⌊12f I(n0)⌋ ≥ 6. Since f I is nondecreasing,

f I(ni) ≥ 12 > 4 so that 2f I(ni)− 2 ≥ 3
2f

I(ni). Using this and Lemma 18 again,

we obtain that ni ≥ 2f I(ni)−2 ≥ ⌊32f I(ni)⌋ ≥ f I(ni
i+ i+1) and f(f I(ni)−1) >

f(f I(ni−1)− 1).
Since we insert in this stage into C only strings of the length f(f I(ni)−1), the

last condition guarantees that no computation considered in the previous stages
will be changed.
Run Fi on all inputs of the length ni. Let the outputs be z1, . . . , z2ni . Note

that |zj | ≤ ni
i + i for every j, 1 ≤ j ≤ 2ni .

If there is some j such that zj is not f -padded, then go to the next stage (by
Remark 5).
If for every j, zj is f -padded, then the cardinality of the set {z1, . . . , z2ni} is

at most 2f
I(ni

i+i+1) − 1 by Lemma 10. Therefore there exists some z such that

|F−1
i (z) ∩Σni | ≥ 2ni

2f
I(ni

i+i+1) − 1
.

Recall that ni is chosen such that 2f
I(ni)− 2 ≥ f I(ni

i+ i+1). This implies that

|F−1
i (z) ∩ Σni | ≥ 2ni

2f
I(ni

i+i+1) − 1
> 2ni−2fI(ni)+2.
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Hence there are strings x1, x2 with Fi(x1) = Fi(x2) = z such that their prefixes

of the length f I(ni)− 1 or their suffixes of the same length differ. If x1 = y1y2y3
and x2 = y4y5y6 such that y1 6= y4 and |y1| = |y3| = |y4| = |y6| = f I(ni)−1 then
insert [y1]f into C. Now, x1 ∈ L1(C) and x2 /∈ L1(C) ∪ L2(D). If y1 = y4 insert
[y3]f into D. Then x1 ∈ L2(D) and x2 /∈ L1(C) ∪ L2(D). Since Fi computes the
same value for x1 and x2 it is not a reducibility from L1(C) ∪ L2(D).

Statement (2). Let k > 0 be a natural number. We prove that Rk-tt(f -PAD) (

Rk+1-tt(f -PAD). For any f -padded set C, define

L3(C) = {x0x1 . . . xky; f I(|x0x1 . . . xky|) ≥ | bin(k)|+ 1 and
|xi| = f I(|x0x1 . . . xky|)− | bin(k)| − 1 and

for all i with 0 ≤ i ≤ k, [0|bin(k)|−|bin(i)| bin(i)xi]f ∈ C}.

A k+1-tt-reducibility from L3(C) to C works as follows. On an input z, find n =

f I(|z|)−1. This can be done in polynomial time by Lemma 11. If n−| bin(k)| < 0
or (1 + k)(n − | bin(k)|) > |z|, let α ≡ 0 and y0 = · · · = yk = 0 be strings.
Otherwise, let x0 be the first n− | bin(k)| letters of z, x1 be the next n− | bin(k)|
letters etc. Let α be conjunction of k+1 variables and for all i between 0 and k,

let yi = [0
|bin(k)|−|bin(i)| bin(i)xi]f .

Let i be a number between 0 and k. Since

|[0|bin(k)|−|bin(i)| bin(i)xi]f | = f(| bin(k)|+ f I(|x0 . . . xky|)− | bin(k)| − 1) ≤
f(f I(|x0 . . . xky|)− 1) < |x0 . . . xky|,

〈α, y0, . . . , yk〉 is computable in polynomial time. Now, we have x0 . . . xky ∈
L3(C) iff

α(χC (y0), . . . , χC(yk)) = 1.

Thus L3(C) ≤P
k+1-tt C.

We construct a set C such that L3(C) is not k-tt-reducible to any f -padded
set.
We diagonalize against polynomial time transducers represented by a sequence

{Fi} from Proposition 8.
Let n0, n1, . . . be a sequence from Lemma 18 for a = k.

Stage 0. Let C = ∅.
Stage i > 0. Since we insert in this stage into C only strings of the length

f(f I(ni)−1), it guarantees that no computation considered in the previous stages
will be changed.
Run Fi on all inputs of the length ni. If there is some x of the length ni such

that Fi(x) = 〈α, z1, . . . , zk〉, where for some j, zj is not f -padded, then go to the
next stage (by Remark 5).
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In the opposite case, by Lemma 10, there are at most 2f
I(ni

i+i+1)−1 f -padded

strings possibly computed by Fi. There are at most 2
2k boolean functions of k

variables. Therefore there exists some x of the length ni such that

|F−1
i (Fi(x)) ∩Σni | ≥ 2ni

22
k
(2f

I (ni
i+i+1) − 1)k

> 2ni−2k−kfI(ni
i+i+1).

Recall that ni is chosen such that

f I(ni
i + i+ 1) +

2k

k
+

k + 1

k
⌊log k⌋+ 2k + 1

k
≤

⌊(1 + 1
2k )f

I(ni)⌋+ ⌊ 12k f I(ni)⌋ ≤ k+1
k

f I(ni).

Therefore

kf I(ni
i + i+ 1) + 2k + (k + 1)| bin(k)|+ k + 1 ≤ (k + 1)f I(ni).

This implies that

|F−1
i (Fi(x)) ∩ Σni | > 2ni−(k+1)fI (ni)+(k+1)| bin(k)|+(k+1).

Hence there are strings y, y′ ∈ Σni with Fi(x) = Fi(y) = Fi(y
′) such that their

prefixes of the length

(k + 1)f I(ni)− (k + 1)| bin(k)| − (k + 1)

differ. Let y = x0x1 . . . xkz and y′ = x′0x
′
1 . . . x′kz′, where |xi| = |x′i| = f I(ni) −

1 − | bin(k)| for 0 ≤ i ≤ k. For every 0 ≤ i ≤ k, insert 0|bin(k)|−| bin(i)| bin(i)xi

into C. Now y ∈ L3(C) and y′ /∈ L3(C) hence Fi is not a k-tt reducibility from
L3(C) to any f -padded set. �

3.4 Proofs of the main results.

Proof of Theorem 2: By Theorem 15, Rm(f -PAD) ( R1-tt(f -PAD) and there
exist sets A, B such that A ∪ B /∈ RT(f -PAD) ⊇ Rbtt(f -PAD). Since f2UP(n) ≥
fUP(n) we can apply Theorem 19 and obtain Rk-tt(f -PAD) ( Rk+1-tt(f -PAD).

�

Proof of Theorem 3: By Theorem 19 we haveRk-tt(f -PAD)(Rk+1-tt(f -PAD).
By Theorem 13, Rm(f -PAD) = R1-tt(f -PAD) and Rbtt(f -PAD) is closed under
union. Together with Theorem 7 we obtain that Rbtt(f -PAD) is the boolean
closure of Rm(f -PAD). �

Proof of Theorem 4: By Proposition 6 and Theorem 17, Rm(f -PAD) is closed
under boolean operations hence Rm(f -PAD) = Rbtt(f -PAD). �
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4. Examples

The aim of this section is to investigate properties of functions fUP and f2UP.
We prove that all cases from Theorem 2, 3 and 4 occur. Further we give necessary
conditions for satisfying fUP(n) ≤ p(n) or f2UP(n) ≤ p(n) for some polynomial p.

Proposition 20. Let f be a padding function with f(n) ≤ p(n) for some poly-
nomial p and every n. Then f2UP(n) ≤ q(n) for some polynomial q.

Proof: If m < n ≤ f(m) ≤ p(m), then f2UP(n) ≤ f(2m) ≤ p(2m) ≤ p(2n). �

It is not surprising that functions f which are polynomially bounded have also
f2UP(n) polynomially bounded. But a padding function bounded by a polynomial
is out of interest because Rm(f -PAD) consist of all subsets of Σ

∗.

Proposition 21. Let f be a padding function with fUP(n) ≤ p(n) for some

polynomial p and every n. Then f(n) ≤ c
cn
2
1 for some constants c1, c2.

Proof: Let p′(n) = p(n+1). Note that f(n+1) ≤ fUP(f(n) + 1) ≤ p′(f(n)) by
Lemma 9. Applying this procedure n times, we obtain

f(n) ≤ p′(p′ . . . p′
︸ ︷︷ ︸

n

(f(0)) . . . ) ≤ c
cn
2
1

for some constants c1, c2. �

Hence every function f with fUP polynomially bounded lies between polyno-
mials and double exponential. The following proposition shows that the bounds
given by Propositions 20 and 21 are almost optimal.

Proposition 22. There exists a padding function f such that f(n) ≤ nlogn

almost everywhere and fUP(n) > p(n) infinitely often for every polynomial p.

On the other hand, the function g(n) = 22
n
satisfies gUP(n) ≤ n2 + 2.

Proof: Define

f(n) =







4 if n = 0;

nlogn if f(n − 1) = n;

f(n − 1) otherwise.

We claim that for all n and for all m

22
2n ≤ m < 22

2n+1

implies f(m) = 22
2n+1

.

To prove the claim note that f(0) = · · · = f(3) = 22. Moreover, if f(22
2n − 1) =

22
2n

then f(22
2n

) = 22
2n+1

. If f(22
2n

) = 22
2n+1

, then for every m between

22
2n

and 22
2n+1

, f(m) = 22
2n+1

. The claim is proved. It implies that f is time
constructible.
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Next, for every m,

fUP

(

22
2m

+ 1
)

= 22
2m+1

.

Therefore, for infinitely many n,

fUP(n) = 2
22
1+log log log(n−1)

= (n − 1)log(n−1).

This is greater than any polynomial in n.
To verify the property of g note that gUP(0) = gUP(1) = gUP(2) = 2 and for

every n, m such that

m < 22
n+1 − 22n , we have gUP(2

2n +m+ 1) = 22
n+1 ≤ (22n +m+ 1)2.

Hence gUP(n) ≤ n2 + 2. �

Corollary 23. For all k > 1,

Rm(2
2n-PAD) = R1-tt(2

2n-PAD) ( Rk-tt(2
2n-PAD) (

Rk+1-tt(2
2n-PAD) ( Rbtt(2

2n-PAD).

Hence there is a significant difference between tally sets and 22
n
-padded sets

(or “double tally” sets).

Proposition 24. Let f be a padding function with f2UP(n) ≤ p(n) for some

polynomial p and every n. Then f(n) ≤ cnc2

1 for some constants c1, c2.

Proof: Let p′(n) = p(n + 1). Note that f(2n) ≤ f2UP(f(n) + 1) ≤ p′(f(n)).
Hence

f(n) ≤ f(2⌊logn⌋+1) ≤ p′(p′ . . . p′
︸ ︷︷ ︸

⌊log n⌋+1

(f(1)) . . . ) ≤ c
c
⌊logn⌋
2
1 ≤ cnlog c2

1

for some constants c1, c2. �

Hence every function f with f2UP polynomially bounded lies between poly-
nomials and cnc2

1 . The following proposition shows that the bound given by
Propositions 20 and 24 is almost optimal.

Proposition 25. There exists a padding function f such that for all n,

f(n) ≤ n1+logn

and f2UP(n) > p(n) infinitely often for every polynomial p and fUP(n) ≤ 2n.
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On the other hand,

g(n) = 2n
2

satisfies g2UP(n) ≤ n16 + 1.

Proof: Define a sequence as follows:

m0 = 2; mi+1 = 2
⌊logmi⌋2(mi + 1).

Now define f by

f(n) =







1 if n = 0

2 if n = 1

2k(mi + 1) if n = mi + k where 0 ≤ k ≤ ⌊logmi⌋2
mi+1 if n = mi + k where ⌊logmi⌋2 < k < mi+1 − mi.

It is easy to see that f is time constructible and nondecreasing.

Moreover f(n) ≤ 2⌊logn⌋2n ≤ n1+logn and fUP(n) ≤ 2n because f(n + 1) ≤
2f(n). On the other hand,

f2UP(mi + 1) = f(2mi) = f(mi + ⌊logmi⌋2) = 2⌊logmi⌋2(mi + 1).

This is greater than any polynomial in mi + 1.
To verify the property of g note that g2UP(0) = g2UP(1) = 1 and for every

n, m such that m < 2(n+1)
2 − 2n2 ,

g2UP(2
n2+m+1) = g(2(n+1)) = 24(n+1)

2
= 24n

2+8n+4 ≤ 216n2 ≤ (2n2+m+1)16.

Hence g2UP(n) ≤ n16 + 1. �
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[S2] Schöning U., On random reductions from sparse to tally sets, Inform. Process. Lett.
46 (1993), 239–241.

[W1] Watanabe O.,A comparison of polynomial time completeness notions, Theoret. Com-
put. Sci. 54 (1987), 249–265.
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