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Two spaces homeomorphic to Seq(p)

Jerry E. Vaughan

Abstract. We consider the spaces called Seq(ut), constructed on the set Seq of all finite
sequences of natural numbers using ultrafilters ut to define the topology. For such spaces,
we discuss continuity, homogeneity, and rigidity. We prove that S(ut) is homogeneous
if and only if all the ultrafilters ut have the same Rudin-Keisler type. We proved that a
space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to Seq(p)
(i.e., ut = p for all t ∈ Seq). It follows that for a Ramsey ultrafilter p, Seq(p) is a
topological group.

Keywords: ultrafilters, continuity, homeomorphisms, homogeneous, rigid, topological
group, Ramsey ultrafilters, selective ultrafilters

Classification: Primary 54D80, 54C05, 54G05, 54A35, 54H11

1. Introduction

By Seq we mean the set of all finite sequences of natural numbers. More
precisely, for each natural number n ∈ ω, let nω = {t : t is a function and
t : n → ω}. Then Seq = ∪n∈ω

nω. If t ∈ Seq, with domain k = {0, 1, · · · (k − 1)},
and n ∈ ω, let t⌢n denote the function t ∪ {(k, n)}. For every t ∈ Seq let ut be
a non-principal ultrafilter on ω. By Seq({ut : t ∈ Seq}) we denote the space with
underlying set Seq and topology defined by declaring a set U ⊂ Seq to be open
if and only if

(1) (∀ t ∈ U){n ∈ ω : t⌢n ∈ U} ∈ ut.

For short, we write Seq(ut) instead of Seq({ut : t ∈ Seq}). We also consider the
case where there is a single nonprincipal ultrafilter p on ω such that ut = p for all
t ∈ Seq, and in this case we write Seq(p) instead of Seq(ut).
We use the following notation of W. Lindgren and A. Szymanski [11]; put

Ln = {s ∈ Seq : dom(s) = n}, and for any s ∈ Seq the cone over s is defined by
C(s) = {t ∈ Seq : s ⊂ t}.
It is well known that for any choice of {ut : t ∈ Seq}, the space Seq(ut) is

a zero-dimensional, extremally disconnected, Hausdorff space with no isolated
points. For these and other results about the spaces Seq(ut) (sometimes in dif-
ferent guises) see [8, 2.4.7, 2.4.8], [10], [17], [18], [16], [4], [11], [5], and [6]. On the
other hand, we now discuss how different choices of the ultrafilters {ut : t ∈ Seq}
can produce very different properties on Seq(ut).

We improve a result of Kannan-Rajagopalan by proving in §2:
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Theorem 1.1. If f : Seq(ut) → Seq(vt) is continuous and vf(t) 6≤RK ut for all

t ∈ Seq, then f is locally constant on Seq.

It follows from this theorem (see §2) that there is a choice of ultrafilters {ut :
t ∈ Seq} such that Seq(ut) is rigid (i.e., the only homeomorphism from Seq(ut)
into itself is the identity map). In fact, Seq(ut) can have the property that the
only finite-to-one continuous map from Seq(ut) into itself is the identity map (see
Corollary 2.3).
In contrast to Seq(ut) being rigid, it follows from the next theorem that there

is a choice of ultrafilters {ut : t ∈ Seq} such that Seq(ut) is homogeneous (i.e.,
for every s, r ∈ Seq there exists a homeomorphism from Seq(ut) onto Seq(ut))
sending s to r.

Theorem 1.2. Seq(ut) is homogeneous if and only if all the ut have the same

Rudin-Keisler type.

Using results of A. Louveau we get the following

Corollary 1.3. There is a binary group operation + on Seq such that + is
separately continuous on Seq(p) × Seq(p) for any non-principal ultrafilter p. If
p is a Ramsey ultrafilter, then + is continuous, i.e., (Seq(p),+) is a topological
group.

The space Seq(ut) has been independently discovered by several people, some-
times in more generality, sometimes in special cases, and sometimes in different
guises. We discuss briefly the instances of which we are aware. The first instance
of the general space Seq(ut) is due to R. Levy [10] in 1977. At about the same
time, V. Kannan and M. Rajagopalan [8] consider this space as a special case of
a certain direct limit construction. A.G. El’kin [6] defined several topologies on
arbitrary sets using filters and ultrafilters, and although he did not consider Seq
specifically, it is easy to see that Seq(ut) can be included in his constructions.
El’kin also stated a general theorem which yields half of our Theorem 1.2, but
as is common in several Soviet journals, he gave no proofs of his theorems (for
completeness, we include a proof using a theorem of van Douwen). V. Trnková
[17] constructed special cases of Seq(ut) (using only finitely many ultrafilters) by
direct limit, and other ways [17], [18]. A. Szymanski [16] defined the analogous
space for the case of finite sequences of an arbitrary cardinal κ. The elegant type
of definition of the topology in (1) was given by El’kin and Szymanski, and the
same type of elegant definition was also given in the special case of one ultrafilter
by A. Louveau [12], not for Seq, but for the set of all finite subsets of ω. We show
that Louveau’s space L(p) is homeomorphic to Seq(p) (see §4). Preceding the
work mentioned already, A. Arhangel’skii and S. Franklin [1] in 1968 undoubt-
edly contributed to the development of Seq(p) with their space, constructed by
direct limit, called Sω, which is Seq(F), where F is the Fréchet filter on ω. In
1969, S. Sirota constructed a class of spaces S(p) for any ultrafilter p, such that if
p is a Ramsey ultrafilter then S(p) is a topological group with respect to a certain
group operation. Louveau proved that (for p Ramsey) S(p) is homeomorphic to



Two spaces homeomorphic to Seq(p) 211

L(p) (see §5), and by our theorem, S(p) is homeomorphic to Seq(p) (see Theo-
rem 5.1). As far as we can determine, S(p) is the earliest version of Seq(p) using
ultrafilters.

2. Continuity among the Seq(ut)

Continuity among spaces of the form Seq(ut) is related to the Rudin-Keisler
order on types of ultrafilters in ω∗. The type of an ultrafilter u is defined by τ(u) =
{φ(u) : φ ∈ ωω such that φ is a bijection}, where φ denotes the Stone extension
φ : βω → βω of φ. The Rudin-Keisler order is defined by τ(v) ≤RK τ(u) provided
there exists φ ∈ ωω such that φ̄(u) = v (this is equivalent to both (i) for every
V ∈ v, φ−1(V ) ∈ u, and (ii) for every U ∈ u, φ(U) ∈ v [13, p. 539]), and we say
that φ ∈ ωω witnesses the inequality. It is well known that the partial order ≤RK

is antisymmetric (i.e., if τ(u) ≤RK τ(v) and τ(v) ≤RK τ(u) then τ(u) = τ(v) [2,
9.3]). When discussing types, we will often write u instead of τ(u). Kannan and
Rajagopalan [8, 2.4.5, 2.1.4] were the first to investigate the relationships among
Rudin-Keisler order, continuity, and locally constant functions among the spaces
Seq(ut).

Definition 2.1 (Kannan-Rajagopalan [8, p. 104]). A function f : X → Y is said

to be locally constant at x ∈ X provided f maps some neighborhood of x to a

single point. If f is locally constant at all points of X we say that f is locally
constant (on X).

We delve further into the relation among the three notions RK-type, continu-
ity and locally constant functions. Using the El’kin-Szymanski definition of the
topology on Seq, we can give rather short proofs of our results.

Lemma 2.2. If f : Seq((ut))→ Seq((vt)) is continuous at s and {n : f(s⌢n) =
f(s)} 6∈ us then vf(s) ≤RK us.

Proof: Define a function φ = φs by

φ(n) =

{

m if f(s⌢n) ∈ C(f(s)⌢m)

0 otherwise.

This function is well-defined since each f(s⌢n) is in at most one C(f(s)⌢m). We
now show that for every H ∈ vf(s), φ

−1(H) ∈ us, i.e., φ witnesses the inequality
vf(s) ≤RK us. Let H ∈ vf(s), then

W = {f(s)} ∪
⋃

m∈H

C(f(s)⌢m)

is a neighborhood of f(s) in Seq((vt)). By continuity of f at s, f
−1(W ) is a

neighborhood of s, hence

{n : s⌢n ∈ f−1(W )} = {n : f(s⌢n) ∈W} ∈ us.
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Hence

{n : f(s⌢n) = f(s)} ∪ {n : ∃m ∈ H(f(s)⌢n) ∈ C(f(s)⌢m)} ∈ us.

Since the first set in the preceding union is not in us, and φ
−1(H) contains the

second set, we get that φ−1(H) ∈ us. �

Corollary 2.3. If f : Seq((ut)) → Seq((vt)) is continuous and finite-to-one (in
particular if f is a homeomorphic embedding), then vf(s) ≤RK us for all s ∈ Seq.

Proof: For a finite-to one function, {n : f(s⌢n) = f(s)} is finite, hence not a
member of a non-principal ultrafilter. �

Proof of Theorem 1.1. First we note the following equivalent statements:

f is locally constant⇔ ∀ s, f−1(f(s)) is open in Seq(ut)

⇔ ∀ s, {n ∈ ω : s⌢n ∈ f−1(f(s))} ∈ us

⇔ ∀ s, {n : f(s⌢n) = f(s)} ∈ us.

Thus it suffices to show that {n : f(s⌢n) = f(s)} ∈ us for each s ∈ Seq. This,
however, is the contrapositive of Lemma 2.2. �

Corollary 2.4 (Kannan-Rajagopalan [8, Remark 2.4.9]). There exists a family
of 2c rigid spaces of the form Seq(ut) such that every continuous function between
any two elements of the family is locally constant.

Proof: Let P be a set of non-principal ultrafilters that are pairwise unrelated
by the Rudin-Keisler order with |P| = 2c (see [14]). Partition the set P into
countably infinite subsets {{uα

t : t ∈ Seq} : α < 2c}, and take the family of spaces

{Seq(uα
t ) : α < 2

c}. If α 6= β and f : Seq(uα
t )→ Seq(u

β
t ) is continuous, then f is

locally constant by Theorem 1.1. If f : Seq(uα
t )→ Seq(uα

t ) is continuous and not
the identity map, then there exists t ∈ Seq such that f(t) 6= t. By Lemma 2.2,
{n : f(t⌢n) = f(t)} ∈ ut, hence f is not finite-to-one. In particular, f is not a
homeomorphism. Thus each Seq(uα

t ) is rigid. �

Theorem 1.1 corrects an error in the discussion given by Kannan-Rajagopalan
[8, Remark 2.4.6, 2.4.9]. They state that if the ultrafilters in the set {ut, vt : t ∈
Seq} have pairwise different types, then every continuous function f : Seq(ut)→
Seq(vt) is locally constant. Rather than pairwise different types, one needs pair-
wise incomparable types, or the weaker hypothesis of Theorem 1.1. The following
example makes this clear.

Example 2.5. There exists a set of ultrafilters {ut, vt : t ∈ Seq} having pairwise
different types and f : Seq(ut) → Seq(vt) such that f is continuous (and open)
and not locally constant at any t ∈ Seq.

Proof: We will use the following Fact: Given a countable set U ⊂ ω∗ with the
ultrafilters in U having pairwise different types, there exists infinite sets V, T ⊂ ω∗
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and family {Sv : v ∈ V } of infinite sets Sv ⊂ ω∗ such that (1) for each v ∈ V and
all s ∈ Sv, v < s, and (2) the ultrafilters in U ∪ V ∪ (∪{Sv : v ∈ V }) ∪ T have
pairwise different types. The Fact holds because there are 2c types of ultrafilters
([2, (c) p. 206]); so we can pick an infinite set V ⊂ ω∗ such that the ultrafilters in
U ∪ V have pairwise different type. There are 2c ultrafilters above any ultrafilter
(in the RK-order) [2, (d) p. 206]; so we can pick for each v ∈ V a countable set
Sv so that v < s for all s ∈ Sv, and so that the ultrafilters in U ∪ V ∪ (∪{Sv : v ∈
V }) have pairwise different types. Now we pick another infinite set T such that
U ∪V ∪ (∪{Sv : v ∈ V })∪T have pairwise different types, and this completes the
choice of ultrafilters.
We construct f , and ultrafilters ut and vt by induction. We start by letting

f(∅) = ∅, and pick u∅, v∅ ∈ ω∗ so that v∅ < u∅. Let φ∅ witness this inequality.
Assume we have defined f(t), ultrafilters ut, vt, and maps φt ∈ ωω (for t ∈ ∪i≤nLi)
satisfying

(1) vf(t) < ut and the inequality is witnessed by φt,

(2) f(t⌢j) = f(t)⌢φt(j) for all t ∈ ∪i<nLi.

Define f on Ln+1 as follows: For all t ∈ Ln and all j ∈ ω put f(t⌢j) =
f(t)⌢φt(j), Thus (2) holds for t ∈ Ln. Next define ultrafilters ut, vt for t ∈ Ln+1

using the partition of Ln+1 given by {f−1(r) : r ∈ Ln+1 ∩ f(Ln+1)} ∪ (Ln+1) \
f(Ln+1) as follows: By the above Fact, for every r ∈ Ln+1 ∩ f(Ln+1) there exist
ultrafilters vr, and us for s ∈ f−1(r), and vx for x ∈ (Ln+1) \ f(Ln+1) such that
vr < us for all s ∈ f−1(r), and such that all ultrafilters picked so far have pairwise
different types. Thus for each s ∈ f−1(r) we have vf(s) < us. Let φs witness this

inequality. Now (1) holds for t ∈ Ln+1. This completes the induction.
To see that f is not locally constant, we first observe that for every non-empty

open set U ⊂ Seq(ut), there exists N ∈ ω such that for all n ≥ N , U ∩ Ln 6= ∅.
Next we observe that the function f we constructed can easily be shown (using
(2)) to have the property that t ∈ Ln, if and only if f(t) ∈ Ln, and therefore if
t ∈ Ln then f

−1(f(t)) ⊂ Ln.
To see that f is continuous (and open), we use the next lemma which is also

used in the next section.

Lemma 2.6. If f : Seq(ut)→ Seq(vt), and for all s ∈ Seq, vf(s) ≤RK us, with

φs witnessing the inequality, and f(s
⌢n) = f(s)⌢φs(n) for all n ∈ ω, then f is

continuous and open. In particular, f(Seq), the image of f , is open in Seq(vt).

First we prove that f is continuous. Let W be open in Seq(vt), and let
x ∈ f−1(W ). We need to show that

{n : x⌢n ∈ f−1(W )} = {n : f(x⌢n) ∈W} ∈ ux.

Since f(x) ∈ W , we have B = {m : f(x)⌢m ∈ W} ∈ vf(x). It follows that

φ−1x (B) ∈ ux. Thus it suffices to prove

φ−1x (B) ⊂ {n : x⌢n ∈ f−1(W )}.
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Now let n ∈ φ−1x (B). Then φx(n) ∈ B; so f(x)⌢φx(n) = f(x⌢n) ∈ W , hence
x⌢n ∈ f−1(W ).
To see that f is an open mapping, let U be open in Seq(ut), and let y ∈ f(U).

Pick x ∈ U such that f(x) = y. Then S = {n : x⌢n ∈ U} ∈ ux. Since φx

witnesses the inequality vf(x) ≤ ux, we have φx(S) ∈ vy . We must show that

{n : y⌢n ∈ f(U)} ∈ vy ; so it suffices to prove that φx(S) ⊂ {n : y⌢n ∈ f(U)}.
Let n ∈ φx(S). There existsm ∈ S such that φx(m) = n. Now we have x

⌢m ∈ U ,
hence f(x⌢m) ∈ f(U); so f(x)⌢φx(m) ∈ f(U), which says that y⌢n ∈ f(U).
This completes the proof that f(U) is open. �

3. Homogeneity and Seq(ut)

In this section we prove Theorem 1.2 which generalizes the well-known result
that Seq(p) is homogeneous for any ultrafilter p. The statement “if all the ut have
the same type then the space Seq(ut) is homogeneous” was stated without proof in
more generality by El’kin [6]. A. Kato [9] gave a proof that Seq(p) is homogeneous
using the following lemma of van Douwen. Our proof of Theorem 1.2 uses van
Douwen’s lemma in a similar way.

Lemma 3.1 Homogeneity Lemma (van Douwen [3, 1.4]). Let X be a countable
T3-space with no isolated points. Then the following are equivalent:

(1) X is homogeneous,
(2) every non-empty open subset of X is homeomorphic to X ,
(3) for every x, y ∈ X there exist a clopen neighborhood U of x and a clopen

neighborhood V of y such that U is homeomorphic to V by a homeomor-

phism that carries x to y.

Proof of Theorem 1.2. If Seq(ut) is homogeneous, then all the ut have the
same type by Corollary 2.3 and the antisymmetric property of the Rudin-Keisler
order. We prove the converse. Assume for every s, t ∈ Seq that φs,t ∈ ωω

is a bijection whose Stone extension satisfies φs,t(us) = ut. By van Douwen’s
Homogeneity Lemma, it suffices to show that C(s) is homeomorphic to C(t) by
a homeomorphism that takes s to t. We define such a homeomorphism h by
induction. Define h(s) = t, and by induction define

∀x ∈ C(s)(h(x⌢n) = h(x)⌢φx,h(x)(n)).

By Lemma 2.6, h is continuous and open. We need to prove that h is one-to-one
and onto. This we do in the following lemma.

Lemma 3.2. Let h : Seq(ut)→ Seq(vt), such that h(s) = t, and for all x ∈ Seq,

vh(x) ≤RK ux, with φx witnessing the inequality, and h(x
⌢n) = h(x)⌢φx(n) for

all x ∈ C(s) and all n ∈ ω. If all the φx are one-to-one then h is one-to-one, and

if all the φx are onto then h is onto.

First we show that h is one-one. Obviously s is the only element that h maps
to t. Assume we have shown that h is one-one for all x ∈ C(s) with dom(x) < k.
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If x, y ∈ C(s) and dom(x) = dom(y) = k, then there exist a, b ∈ C(s) with
dom(a) = dom(b) = k − 1 such that x = a⌢n and y = b⌢m for some n,m. If
f(x) = f(y), then f(a)⌢φa,f(a)(n) = f(b)⌢φb,f(b)(m). Since f(a), f(b) have the

same domain, f(a) = f(b), so by the induction hypothesis a = b; thus φa,f(a) =
φb,f(b), and since φa,f(a) is one-one, we have n = m, hence x = y.

To see that h is onto C(t), it is obvious that h maps s to t; so assume that
h is onto all y ∈ C(t) with dom(y) < k, and suppose z ∈ C(t) and dom(z) = k.
Let w = z ↾ (k − 1). By the induction hypothesis there exists a ∈ C(s) such that
f(a) = w. Let m = z(k − 1), and since φa,f(a) is onto, there exists n such that

φa,f(a)(n) = m. Then f(a
⌢n) = f(a)⌢φa(n) = w

⌢m = z.

Corollary 3.3 ([9, Lemma 2.1]). For every non-principal ultrafilter p on ω, the
space Seq(p) is homogeneous.

4. Louveau’s space

The underlying set of Louveau’s space L(p) is the set [ω]<ω of all finite subsets
of ω. Let ∆ denote the symmetric difference operator (i.e., for F,G ∈ [ω]<ω,
F∆G = (F \G)∪(G\F )). It is well known that ([ω]<ω ,∆) is a commutative group.
A. Louveau [12] defined, for each non-principal ultrafilter p on ω, a topology TL(p)
on the set [ω]<ω, by declaring a set U ⊂ [ω]<ω to be open if and only if

(2) (∀F ∈ U)({n ∈ ω : F∆{n} ∈ U} ∈ p).

For n > maxF , F∆{n} = F ∪{n}, thus the topology on L(p) can also be defined
by declaring that a set U is open if and only if

(3) (∀F ∈ U)({n ∈ ω : F ∪ {n} ∈ U} ∈ p).

In this section, we show that L(p) and Seq(p) are homeomorphic. Despite the
obvious similarity in the definition of the topologies on Seq(p) and L(p) displayed
in (1) and (3), a homeomorphism between these spaces is not readily apparent.
We say that t is increasing provided for every i, j ∈ dom(t), if i < j then

t(i) < t(j).

Lemma 4.1. Let X = {t ∈ Seq : t is increasing}. Then X is open in Seq(p).

Proof: Let t ∈ X . It is obvious that if t is increasing and n > m(t) = max{t(i) :
i ∈ dom(t)} then t⌢n is increasing. Thus {n > m(t) : t⌢n ∈ X} is cofinal in ω
hence is a member of the ultrafilter p. Thus X is open. �

For any F ∈ [ω]<ω let ψF denote the enumerating function of F , i.e., if F
contains exactly n points, then F is listed by ψF (0) < ψF (1) < · · · < ψF (n − 1)
(the enumerating function of the empty set is defined to be the empty function
in Seq). Note that all ψF are increasing functions.
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Theorem 4.2. Seq(p) is homeomorphic to L(p).

Proof: We need only prove that the function f : L(p) → Seq(p) defined by
f(F ) = ψF is a homeomorphism onto X = {t ∈ Seq : t is increasing}. Clearly
f is a one-one function into X . To see that f is onto X , let t ∈ X , and put
F = range(t) = {t(i) : i ∈ dom(t)}. Clearly f(F ) = t since t is increasing.
We now show that f is continuous. Let U be open in X . Since X is open in
Seq(p), U is also open in Seq. We need to show that f−1(U) is open in L(p). Let
F ∈ f−1(U), i.e., ψF ∈ U ; so P = {n ∈ ω : (ψF )

⌢n ∈ U} ∈ p. For n > maxF ,
(ψF )

⌢n is the enumerating function of the set F ∪{n} (i.e., ψF∪{n} = (ψF )
⌢n),

thus {n ∈ ω : F ∪{n} ∈ f−1(U)} differs from P by a finite set; hence is a member
of p; so f−1(U) is open in L(p). To see that f is an open map, let U be open in
L(p), and let t ∈ f(U); say t = ψF where F ∈ U . Then {n ∈ ω : t⌢n ∈ f(U)}
differs from {n ∈ ω : F ∪ {n} ∈ U} by a finite set; so f(U) is open in Seq, hence
in X . This completes the proof. �

By 3.3, Seq(p) is homogeneous for any non-principal ultrafilter p. If we take p
to be a Ramsey ultrafilter (see [2, Theorem 9.6]) we can get the stronger result
that Seq(p) is a topological group. We call on theorems of Louveau and therefore
do not need the definition of a Ramsey (also called selective) ultrafilter (see [2],
[12]).

Proof of Corollary 1.3. Louveau proved that the symmetric difference operator
∆ is separately continuous on L(p)× L(p) for any p. Using the homeomorphism
h : Seq(p) → L(p) given by Theorem 4.2, the operation defined by s + t =
h−1(h(s)∆h(t)) is also separately continuous. If p is Ramsey, by Louveau [12,
Theorem 6], (L(p),∆) is a topological group. Thus (Seq(p),+) is also a topological
group. �

5. Sirota’s space

We define Sirota’s space S(p). Let u be a filter on ω finer than the Frechét
filter, let

X = {x ∈ ω2 : (∃nx)(∀ i ≥ nx)(x(i) = 0)},

and for each x ∈ X let m(x) = {i ∈ ω : x(i) = 1}, a finite set. In [15], S.M. Sirota
defined a topology T (u) on X by taking as basic neighborhoods of y ∈ X all sets
of the form

H(y,A) = {x ∈ X : m(x) \A = m(y) \A},

where A ∈ u. Let TS(p) denote the topology on X generated by the above base,
and let S(p) = (X, TS(p)).

Theorem 5.1. Let p be an ultrafilter on ω. Then S(p) is homeomorphic to
Seq(p) if and only if p is a Ramsey ultrafilter.

Proof: Since the underlying set of Sirota’s space can be considered as the set of
all characteristic functions of finite subsets of ω, the topology TS(p) can be consid-
ered as a topology on [ω]<ω, as done in [12]. Louveau denoted Sirota’s topology
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on [ω]<ω by T1(p) ([12, Definition 5]), and proved that the Sirota topology equals
the Louveau topology if and only if p is a Ramsey ultrafilter (iff (L(p),∆) is a
topological group [12, Theorem 6]). The result now follows from Theorem 4.2.

�

It is interesting to note that Sirota’s space is possibly the earliest (homeomor-
phic) version of Seq(p), and that Sirota’s version of Seq(p) can only be constructed
in models of set theory in which Ramsey ultrafilters exist such as models of the
continuum hypothesis or Martin’s Axiom. There are models, however, where
there are no Ramsey ultrafilters (see [7, Theorem 91]).

I would like to thank Petr Simon for helpful discussions about the origins of
Seq(ut) (he has been aware of Lemma 4.1 for many years), and both Petr Simon
and Oleg Pavlov for bringing several references to my attention.
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