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The Laplace derivative

R.E. Svetic

Abstract. A function f : R → R is said to have the n-th Laplace derivative on the
right at x if f is continuous in a right neighborhood of x and there exist real numbers

α0, . . . , αn−1 such that sn+1
R

δ

0
e−st[f(x+ t) −

P
n−1
i=0

αiti/i!] dt converges as s → +∞

for some δ > 0. There is a corresponding definition on the left. The function is said to
have the n-th Laplace derivative at x when these two are equal, the common value is
denoted by f〈n〉(x).
In this work we establish the basic properties of this new derivative and show that, by

an example, it is more general than the generalized Peano derivative; hence the Laplace
derivative generalizes the Peano and ordinary derivatives.

Keywords: Peano derivative, generalized Peano derivative, Laplace derivative, Laplace
transform, Tauberian theorem

Classification: Primary 26A24; Secondary 26A21, 26A48, 40E05, 44A10

1. Introduction

The Peano derivative and its generalizations have received considerable atten-
tion, see for example [1], and [3]–[16].
Lee’s generalized Peano derivative [8] is of interest in this work. A continuous

function f has the generalized Peano derivative at a point x, denoted by f[1](x),

if some k-th primitive of f has the (1+ k)-th Peano derivative at x. In [14] it was
shown that this implies that

lim
s→+∞

sk+2
∫ δ

0
e−st[f (−k)(x+ t)− f(x)tk/k!] dt = f[1](x)

for every δ > 0, where f (−k) is the k-th primitive of f to be defined in Section 2.
Integrating by parts k times shows that

(1) lim
s→+∞

s2
∫ δ

0
e−st[f(x+ t)− f(x)] dt = f[1](x).

The statement “f[1](x) exists implies (1)” is an Abelian theorem in Laplace

transform theory. In this work we show that (as is usually the case) the converse
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does not hold. Namely, that s2
∫ δ
0 e

−st[f(x+t)−f(x)] dtmay converge as s→ +∞
for some δ > 0 even though f[1](x) does not exist.

This suggests that the limit behavior of the Laplace transform could be used to
define a generalized derivative. We use this idea to define the Laplace derivative
of order n ∈ Z

+ and show that it generalizes the generalized Peano derivative.

2. Preliminaries

We denote the real numbers and integers by R and Z respectively. Then R
+,

Z
+ and R+, Z+ denote the positive and non-negative elements respectively. When
we say exists, we mean exists finite. Unless otherwise specified, function means
real valued function of a real variable, and given two functions f and g, we write
f ∼ g as x→ x+0 if limx→x+

0

f(x)/g(x) = 1.

We use f (−k) to denote the particular k-th primitive of a function f given by

f (−k)(x) =

∫ x

ξ
f (−k+1)(t) dt for k ∈ Z

+ and x ∈ R,

where f (0) = f and ξ ∈ R is fixed. There is no loss in generality since, when
a result mentioned in this work depends on a primitive, it will be true that the
result is independent of which primitive is taken (see [8]).

It will happen that sin(x) or cos(x) appears in an expression according to
whether a certain integer is even or odd. It will simplify the exposition if we adopt
the convention that the notation S(x) will denote the appropriate trigonometric
function.

3. The Laplace derivative

We say that a function f has the n-th Peano derivative (PD) at x, n ∈ Z
+, if

there exist real numbers f(1)(x), . . . , f(n−1)(x) such that

f(x+ h)− f(x)− f(1)(x)h − · · · − f(n−1)(x)h
n−1/(n− 1)!

hn/n!

converges as h → 0. In this case the limit is denoted by f(n)(x); for convenience

we define f(0)(x) := f(x) (see [13]).

We say that f has the n-th generalized Peano derivative (GPD) at x, n ∈ Z
+ if

there exists a nonnegative integer k such that a k-th primitive of f has the (n+k)-
th Peano derivative at x. We denote the result by f[n](x) and for convenience

we define f[0](x) := f(x) (see [8], [10]). From our definition of the primitive, it

follows that this is equivalent to saying that f has the n-th GPD at x if there
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exists a nonnegative integer k and real numbers f[1](x), . . . , f[n−1](x) such that

(2)

f (−k)(x+ h)− f(x)hk/k!− f[1](x)h
1+k/(1 + k)!− · · ·

· · · − f[n−1](x)h
n−1+k/(n− 1 + k)!

hn+k/(n+ k)!

converges as h→ 0.
The lim inf (lim sup) as h→ 0 of the quotient in (2) will be denoted by lkf(n)(x)

(ukf(n)(x)) or even lk (uk) when there is no possibility of confusion. Notice that

l0 and u0 are just the n-th Peano derivatives of f and the standard proof of
l’Hospital’s rule gives the monotonicity property ([10]):

(3) l0 ≤ l1 ≤ l2 ≤ · · · ≤ u2 ≤ u1 ≤ u0.

It follows that we can write limk→∞ lk = l and limk→∞ uk = u. Then Theorem 2
in [14] implies that f has the n-th GPD at x if and only if l = u ∈ R; in this case
f[n](x) = l. In the proof of Theorem 2 we see that l = u ∈ R implies that

(4) sn+1
∫ δ

0
e−st[f(x+ t)−

n−1
∑

i=0

f[i](x)t
i/i!] dt

converges as s→ +∞

for some δ ∈ R
+

and that the limit is l. The converse, namely that (4) implies that l = u ∈ R, was
not considered in [14]. The main result of this work is that the converse is not
true and is most easily stated after we make the following definitions.

Definition 3.1. A function f : R → R has the n-th Laplace derivative on the
right [left] at x if f is continuous in a right [left] neighborhood of x and there
exist numbers α0, . . . , αn−1 such that

sn+1
∫ δ
0 e

−st[f(x+t)−
∑n−1

i=0 αit
i/i!] dt[(−s)ns

∫ 0
−δ e

st[f(x+t)−
∑n−1

i=0 αit
i/i!] dt]

converges as s→ +∞ for some δ > 0. In this case the limit is denoted by f〈n,+〉(x)

[f〈n,−〉(x)].

Definition 3.2. A continuous function f : R → R has the n-th Laplace derivative
at x if f〈n,+〉(x) = f〈n,−〉(x). In this case the common value is denoted by f〈n〉(x).

We may now state the main result.

Theorem 3.3. There exists a continuous function which has the Laplace de-

rivative at a point and does not have the generalized Peano derivative there.

Furthermore, the Laplace derivative of this function is not the generalized Peano

derivative of any continuous function.

The function guaranteed by this theorem is such that (4) holds (with limit
equal to 0) while l = −∞ and u = +∞. This is the only possibility; namely,
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if (4) holds and any lk (or uk) is finite, then the Tauberian theorem [2] implies
that lk+1 = uk+1 and that the common value equals the limit in (4).
Finally, we will show that, if the Laplace derivative exists at a point x ∈ R,

then it is well defined and that the associated numbers α0, . . . , αn−1 are uniquely
determined with α0 = f〈0〉(x) := f(x) and αi = f〈i〉(x) for i = 1, . . . , n− 1.

4. Proof of the main result

For each integer m ≥ 2 define the function φm : R+ → R by φm(0) = 0 and

φm(x) = x[1/m+m+1] sin(x−1/m) otherwise. Since each φm is m-times continu-
ously differentiable on R+, it makes sense to define constants cm,j for integer j,
0 ≤ j ≤ m by

φ
(j)
m (x) ∼ cm,j x

[1/m+(m−j)(1+1/m)]S(x−1/m) as x→ 0+.

Now for each integer m ≥ 2 define fm : R → R by

fm(x) =

{

φ
(m)
m (|x|)/βm if 0 ≤ |x| ≤ αm,

0 if αm < |x|,

where αm is the largest zero of φ
(m)
m less than 1/m and βm is a positive constant

to be specified shortly. The functions defined in this way are continuous on R

since φ
(m)
m (αm) = 0 and have support in [−1/m, 1/m]. In order to simplify the

exposition, we use this definition of fm since it is adequate to prove the first part
of the theorem. However, to prove the second part, we will need to modify the
definition slightly; we do this later.

Notice that f
(−k)
m (x) = (φ

(m)
m )(−k)(x)/βm = φ

(m−k)
m (x)/βm, with ξ = 0, for

0 ≤ k ≤ m and 0 ≤ x ≤ αm. Thus,

(5) f
(−k)
m (x) ∼

cm,m−k

βm
x[1/m+k(1+1/m)] S(x−1/m) as x→ 0+.

Since fm(0) = 0, the quotient in (2) takes the form (1+ k)!f
(−k)
m (x)/x1+k for the

n = 1 case. It is easy to check that the smallest integer k such that lk = uk is m.

Thus, we have that (fm)
(−m)
(1+m)

(0) = (fm)[1](0) = 0. Using (1), we find that

(6) lim
s→+∞

s2
∫ ∞

0
e−stfm(t) dt = 0.

In addition, since s2
∫ ∞
0 e−stfm(t) dt is a continuous function of s that converges

to zero as s tends to zero from the right, it is bounded on R+. Hence, we may
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choose each βm such that |fm(x)| ≤ 1 on R and |s2
∫ ∞
0 e−stfm(t) dt| ≤ 1 for

s ∈ R+. We define our example function f : R → R by

f(x) =
∞
∑

m=2

amfm(x)

for all x where {am}∞m=2 is a sequence of positive numbers which we initially
require to satisfy the condition that

(7) a2 ≤ 1 and am+1 < am/5 for each integer m ≥ 2.

Then, since |fm| ≤ 1 for all m, the previous sum converges uniformly on R to a
continuous function with support in [−1, 1] and |f(x)| ≤ 5/4 on R.
Now we show that f〈1〉(0) = 0 and, since f is symmetric, it will suffice to show

that f〈1,+〉(0) = 0. Let s, δ ∈ R
+ be arbitrary, then

s2
∫ δ

0
e−stf(t) dt = s2

∫ δ

0
e−st

∞
∑

m=2

amfm(t) dt =

∞
∑

m=2

am s2
∫ δ

0
e−stfm(t) dt

by the bounded convergence theorem. Furthermore, since |s2
∫ δ
0 e

−stfm(t) dt| ≤ 1
for all s ∈ R+, the convergence is uniform with respect to s. This and (6) imply
that

f〈1,+〉(0) = lim
s→+∞

s2
∫ δ

0
e−stf(t) dt =

∞
∑

m=2

am lim
s→+∞

s2
∫ δ

0
e−stfm(t) dt = 0.

Preparing to show that f[1](0) does not exist, we introduce two additional

sequences {xm}∞m=2 and {ym}∞m=2 satisfying

(8) 0 < · · · < xm+1 < ym < xm < · · · < y2 < x2 ≤ 1

and simultaneously complete the definition of the sequence {am}∞m=2.
Set x1 = y1 = 1= a2. Then, for an integerm ≥ 2, assume that x1, x2, . . . , xm−1

and y1, y2, . . . , ym−1 and a2, a3, . . . , am have been chosen. We will choose xm,
ym and am+1.
First we choose xm ∈ (0, ym−1) such that for each x ∈ (0, xm] we have

(9) |ak+2f
(−k)
k+2 (x) + · · ·+ am−1f

(−k)
m−1(x)| <

1

4

am |cm,m−k|

βm
x[1/m+k(1+1/m)]

for each integer k, 0 ≤ k ≤ m−3 (an empty condition when m = 2, in which case
we choose x2 = 1/2 < y1 = 1). This is possible for m ≥ 3 as follows. Let m′ and
k be integers such that 2 ≤ m′ < m and 0 ≤ k ≤ m′. Then we have

f
(−k)
m′ (x) ∼

cm′,m′−k

βm′
x[1/m′+k(1+1/m′)] S(x−1/m′

) as x→ 0+.
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Since m′ < m implies that 1/m + k(1 + 1/m) < 1/m′ + k(1 + 1/m′), the
left hand side of (9) can be made smaller than any fixed constant multiple of

x[1/m+k(1+1/m)] for all sufficiently small x.
Now we choose ym ∈ (0, xm) such that for each integer k = 0, . . . ,m− 2 there

exist points z+ and z− (depending on k) in (ym, xm) such that

amf
(−k)
m (z+) > +

3

4

am |cm,m−k|

βm
(z+)[1/m+k(1+1/m)] > +3m

(z+)1+k

(1 + k)!

and

amf
(−k)
m (z−) < −

3

4

am |cm,m−k|

βm
(z−)[1/m+k(1+1/m)] < −3m

(z−)1+k

(1 + k)!
.

(10)

Property (5) implies the left pair of inequalities, while the right pair of inequalities

follow from x[1/m+k(1+1/m)]−(1+k) → +∞ as x → 0+ since k + 2 ≤ m implies
that 1/m+ k(1 + 1/m) < 1 + k.
Now we choose am+1 such that

0 < am+1 <
am

5
min

{

1,
|cm,0|

βm
, . . . ,

|cm,m|

βm

}

y
[1/m+m+1]
m .

Then, for x ∈ (ym, xm), we have

|am+1f
(−k)
m+1(x) + am+2f

(−k)
m+2(x) + · · · | ≤

∞
∑

m′=m+1

am′ |f
(−k)
m′ (x)| ≤

∞
∑

m′=m+1

am′

since |fm| ≤ 1 implies that |f
(−k)
m | ≤ 1 on [0, 1] for all k ∈ Z+. Hence

(11)

|am+1f
(−k)
m+1(x) + · · · | ≤ am+1 + (

1

5
)am+1 + (

1

5
)2am+1 + · · · =

5

4
am+1

<
5

4

am

5
min{1,

|cm,0|

βm
, . . . ,

|cm,m|

βm
}y
[1/m+m+1]
m

<
1

4

am

βm
|cm,m−k|x

[1/m+k(1+1/m)]

since x ∈ (ym, xm) and k ≤ m− 2. Thus, by the principle of recursive definition,
we have sequences {am}∞m=2, {xm}∞m=2 and {ym}∞m=2 which satisfy conditions
(7), (8), (9), (10), and (11) for all integers m ≥ 2.
This completes our preparations and, as before, it will suffice to show that

f[1,+](0) does not exist. Since f(0) = 0, the quotient in (2) takes the form
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(1 + k)!f (−k)(x)/x1+k , k ∈ Z+, and as previously mentioned we must show that
lk = −∞ and uk = +∞ for each k ∈ Z+. Since the arguments are similar, we
only show the latter; namely that

uk = lim sup
x→0+

f (−k)(x)

x1+k/(1 + k)!
= +∞ for each k ∈ Z+.

Taking advantage of the monotonicity property, (3), it suffices to consider an
arbitrary integer k ≥ 2. Since x ∈ [0, 1], the bounded convergence theorem implies
that we may integrate term by term to obtain

uk = lim sup
x→0+

∞
∑

m=2

am
f
(−k)
m (x)

x1+k/(1 + k)!

≥
k

∑

m=2

am lim inf
x→0+

f
(−k)
m (x)

x1+k/(1 + k)!
+ lim inf

x→0+
a1+k

f
(−k)
1+k (x)

x1+k/(1 + k)!

+ lim sup
x→0+

∞
∑

m=k+2

am
f
(−k)
m (x)

x1+k/(1 + k)!
.

Using (5), we have limx→0+(1 + k)!f
(−k)
m (x)/x1+k = 0, for m = 2, . . . , k, and

lim infx→0+(1 + k)!f
(−k)
1+k (x)/x

1+k = −(1 + k)! |c1+k,1|/β1+k. Hence

uk ≥ lim sup
x→0+

∞
∑

m=k+2

am
f
(−k)
m (x)

x1+k/(1 + k)!
− a1+k

(1 + k)! |c1+k,1|

β1+k

≥ lim sup
k+2<l→∞

max
x∈(yl,xl)

{ ∞
∑

m=k+2

am
f
(−k)
m (x)

x1+k/(1 + k)!

}

− a1+k
(1 + k)! |c1+k,1|

β1+k
.

To estimate this sum, let l be an integer such that l > k + 2. Then

|ak+2f
(−k)
k+2 (x) + · · ·+ al−1f

(−k)
l−1 (x)| <

1

4

al|cl,l−k|

βl
x[1/l+k(1+1/l)]

for every x ∈ (yl, xl) follows from (9). Furthermore,

|al+1f
(−k)
l+1 (x) + · · · | <

1

4

al|cl,l−k|

βl
x[1/l+k(1+1/l)]

for every x ∈ (yl, xl) follows from (11).



338 R.E. Svetic

According to (10) there exists a point z+ ∈ (yl, xl) such that

alf
(−k)
l (z+) > +

3

4

al|cl,l−k|

βl
(z+)[1/l+k(1+1/l)] > +3l

(z+)1+k

(1 + k)!
.

Thus we have

∞
∑

m=k+2

amf
(−k)
m (z+) ≥ −

∣

∣

∣

∣

l−1
∑

m=k+2

amf
(−k)
m (z+)

∣

∣

∣

∣

+ alf
(−k)
l (z+)

−

∣

∣

∣

∣

∞
∑

m=l+1

amf
(−k)
m (z+)

∣

∣

∣

∣

≥

[

−
1

4
+
3

4
−
1

4

]

al|cl,l−k|

βl
(z+)[1/l+k(1+1/l)]

=
1

4

al|cl,l−k|

βl
(z+)[1/l+k(1+1/l)] > l

(z+)1+k

(1 + k)!
.

Hence

max
x∈(yl,xl)

{ ∞
∑

m=k+2

am
f
(−k)
m (x)

x1+k/(1 + k)!

}

≥
l(z+)1+k/(1 + k)!

(z+)1+k/(1 + k)!
= l.

Thus

uk ≥ lim sup
k+2<l→∞

l − a1+k
(1 + k)! |c1+k,1|

β1+k
= +∞.

In order to prove the second part of the theorem we need the functions fm to
be differentiable on R − {0}. We modify the definition of fm as follows.
First, define ψa,b : R+ → R for a, b ∈ R

+, a < b, by

ψa,b(x) =











1 if 0 ≤ x < a,

Fa,b(x) if a ≤ x < b,

0 if b ≤ x <∞,

where Fa,b = [2x
3 − 3ax2 − 3bx2 + 6abx+ b3 − 3ab2]/(b− a)3. Observe that ψa,b

is continuously differentiable on R+.

Next, let α′m be the largest zero of φ
(m)
m less than αm. Finally, define

fm(x) =
φ
(m)
m (|x|)ψα′

m,αm
(|x|)

βm
.
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Now, each fm is differentiable on R − {0} and has support contained in
[−1/m, 1/m]. Thus in a neighborhood of any x 6= 0, f is the sum of at most

finitely many non-zero differentiable functions and hence f〈1〉(x) = f
(1)(x).

With this new definition we repeat the construction of f and observe that
equation (5) (for 0 ≤ x ≤ α′m) remains valid, as does the remainder of the proof
of the first part, although the constants am, βm, xm, and ym may change.

Proceeding toward a contradiction, suppose g : R → R is continuous and such

that g[1] = f〈1〉 on R. Since f〈1〉 = f
(1) on R−{0}, g is differentiable on R−{0},

and hence, without loss of generality, we may write g = f on R−{0}. Since f and
g are continuous on R, it must be f ≡ g which is impossible since f[1](0) does not

exist. Hence no such g exists which shows that f〈1〉 is not the generalized Peano

derivative of any continuous function. �

5. Properties of the Laplace derivative

The Laplace derivative is well-defined as a result of the following lemma.

Lemma 5.1. Let f : [a, b]⊂R → R be integrable and n ∈ Z+. If there exists

0 < δ0 < b− a and α ∈ R such that

lim
s→+∞

s1+n
∫ δ0

0
e−stf(a+ t) dt = α,

then the same is true for each 0 < δ < b− a replacing δ0.

Proof: The result is a consequence of the fact that lims→+∞ s1+n
∫ d
c e

−stf(a+
t) dt = 0 for every 0 < c < d < b− a. �

We need the following two lemmas to prove that the Laplace derivative is
uniquely defined.

Lemma 5.2. Let δ ∈ R
+ and p, q ∈ Z+. Then

sq
∫ δ

0
e−sttp dt = p! sq−p−1 + ǫ(s),

where ǫ(s)→ 0 as s→ +∞.

Proof: For p, q ∈ Z+, s
q
∫ δ
0 e

−sttp dt = sq−p−1
∫ sδ
0 e−ττp dτ for any δ ∈ R

+,

where τ = st. Since
∫ ∞
0 e−ττp dτ = p! and lims→+∞ sq−p−1

∫ ∞
sδ e

−τ τp dτ = 0,
we have the desired result. �
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Lemma 5.3. Let n ∈ Z+ and ǫ : R+ → R be continuous with ǫ(0) = 0. Then
for all δ0 ∈ R

+

lim
s→+∞

s1+n
∫ δ0

0
e−sttnǫ(t) dt = 0.

Proof: Let δ0 ∈ R
+ be given. By the continuity of ǫ(t) there exists M ∈ R

+

such that |ǫ(t)| is bounded by M on [0, δ0]. Let ǫ ∈ R
+ be arbitrary and choose

δ ∈ (0, δ0) such that |ǫ(t)| < ǫ on [0, δ]. Then we have

(12)

|s1+n
∫ δ0

0
e−sttnǫ(t) dt| ≤ s1+n

∫ δ0

0
e−sttn|ǫ(t)| dt

≤ s1+n
∫ δ

0
e−sttnǫ dt+ s1+n

∫ δ0

δ
e−sδδn0M dt.

By Lemma 5.2 the right hand side of (12) converges to n!ǫ+ 0 as s → +∞. The
result follows since ǫ was arbitrary. �

Theorem 5.4 (Uniqueness Theorem). Let f : [a, b]⊂R → R be continuous, x ∈
[a, b], and n ∈ Z

+. If f〈n〉(x) exists with associated numbers α0, . . . , αn−1, then

the numbers are uniquely determined with α0 = f(x) = f〈0〉(x) and αi = f〈i〉(x)

for i = 1, . . . , n− 1.

Proof: There is no loss in generality in proving the theorem only for the right
hand one-sided derivative at x ∈ [a, b). We know that there exists δ ∈ R

+ and
ǫx : R

+ → R such that ǫx(s)→ 0 as s→ +∞ and

f〈n,+〉(x) + ǫx(s) = s
1+n

∫ δ

0
e−st[f(x+ t)−

n−1
∑

i=0

αit
i/i!] dt

for all s ∈ R
+. Let m be an integer such that 1 ≤ m < n and s ∈ R

+, then

f〈n,+〉(x)

sn−m +
ǫx(s)

sn−m = s
1+m

∫ δ

0
e−st[f(x+ t)−

m−1
∑

i=0

αit
i/i!] dt

− s1+m
∫ δ

0
e−stαmt

m/m! dt− s1+m
∫ δ

0
e−st

n−1
∑

i=m+1

αit
i/i! dt.

Letting s→ +∞, and using Lemma 5.2 we obtain that 0 = f〈m,+〉(x) − αm − 0.

The m = 0 case, namely α0 = f(0), follows from Lemma 5.3, with n = 0 and
ǫ(t) = f(x+ t)− f(x). �
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Theorem 5.5 (Regularity Theorem). Let f : [a, b]⊂R → R be continuous,

x ∈ [a, b], and n ∈ Z
+. Then,

(i) if f[n](x) exists, then f〈n〉(x) exists and f[n](x) = f〈n〉(x);

(ii) if f(n)(x) exists, then f〈n〉(x) exists and f[n](x) = f(n)(x) = f〈n〉(x);

(iii) if f (n)(x) exists, then f〈n〉(x) exists and f[n](x) = f(n)(x) = f (n)(x) =

f〈n〉(x); and

(iv) for each k, n ∈ Z+, f
(−k)
〈n+k〉

(x) exists if and only f〈n〉(x) does, in which case

they are equal.

Proof: There is no loss in generality in proving the theorem only for the right
hand one-sided derivatives at x ∈ [a, b).

Beginning with (ii), suppose that f(n,+)(x) exists. Since f(x) = f(0,+)(x) =

f〈0,+〉(x) there is a positive integer m ≤ n such that f(j,+)(x) = f〈j,+〉(x) for

j = 0 . . .m − 1. Since f(m,+)(x) exists, there is a continuous ǫx : R+ → R such

that

f(x+ t)−

m−1
∑

i=0

f〈i,+〉(x)t
i/i! = (tm/m!)[f(m,+)(x) + ǫx(t)]

for all t ∈ R+, where ǫx(t)→ 0 as t→ 0
+ and ǫx(0) = 0. Then, using Lemmas 5.1,

5.2 and 5.3, there exists 0 < δ0 < b− x such that

f(m,+)(x) = lim
s→+∞

s1+m
∫ δ0

0
e−sttm[f(m,+)(x) + ǫx(t)]/m! dt

= lim
s→+∞

s1+m
∫ δ0

0
e−st[f(x+ t)−

m−1
∑

i=0

f〈i,+〉(x)t
i/i!] dt

= f〈m,+〉(x).

The proof of (ii) is completed by repeating this calculation n − m + 1 times
and recalling the well known fact that the existence of f(n,+)(x) implies that

f[n,+](x) = f(n,+)(x).

Statement (iii) is now clear since it is well known that if f (n,+)(x) exists then

f (n,+)(x) = f(n,+)(x) and, hence, (ii) completes the proof.

To see (i), assume that f[n,+](x) exists. Then the definition of f[n,+](x) implies

that there exists k ∈ Z+ such that f[n,+](x) = f
(−k)
(n+k,+)

(x). Now, from (ii), we

have that f[n,+](x) = f
(−k)
〈n+k,+〉

(x) and the result will follow from (iv).

To see (iv), we proceed by induction on n ∈ Z+. Since f is continuous, (iii)

implies the n = 0 case by observing that f(x) = (f (−k))(k,+)(x) = f
(−k)
〈k,+〉

(x) for

all k ∈ Z+.
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Now, suppose that for some n ∈ Z
+, (iv) holds for 0, . . . , n − 1. We want to

show that for each k ∈ Z+, f
(−k)
〈n+k,+〉

(x) exists if and only f〈n,+〉(x) does, in which

case they are equal.

Suppose that f
(−k)
〈n+k,+〉

(x) exists for some k ∈ Z
+ since there is nothing to

prove if k = 0. We have

f
(−k)
〈n+k,+〉

(x) = lim
s→+∞

s1+n+k
∫ δ

0
e−st[f (−k)(x+ t)−

k+n−1
∑

i=k

f
(−k)
〈i,+〉
(x)ti/i!] dt

for some 0 < δ < b − x, where f
(−k)
〈i,+〉
(x) = 0, i = 0 . . . k − 1, by (iii) and our

definition of f (−k)(x). If we integrate by parts and let s tend to infinity we
obtain

f
(−k)
〈n+k,+〉

(x) = lim
s→+∞

sn+k
∫ δ

0
e−st[f (−k+1)(x + t)−

k+n−2
∑

i=k−1

f
(−k+1)
〈i,+〉

(x)ti/i!] dt

= f
(−k+1)
〈n+k−1,+〉

(x),

where we have used our induction hypothesis to write f
(−k)
〈i,+〉
(x) = f

(−k+1)
〈i−1,+〉

(x)

for i = k, . . . , k + n − 1. Hence, integrating by parts k times, we find that

f
(−k)
〈n+k,+〉

(x) = f〈n,+〉(x) as required.

Conversely, suppose that f〈n,+〉(x) exists. We have

f〈n,+〉(x) = lim
(s→+∞)

s1+n
∫ δ

0
e−st[f(x+ t)−

n−1
∑

i=0

f〈i,+〉(x)t
i/i!] dt

for some δ ∈ R
+. Integrate by parts and let s tend to infinity to obtain that

f〈n,+〉(x) = lim
(s→+∞)

s1+n+1
∫ δ

0
e−st[f (−1)(x+ t)−

n
∑

i=1

f
(−1)
〈i,+〉
(x)ti/i!] dt

= f
(−1)
〈n+1,+〉

(x).

Integrating by parts k times we obtain that f〈n,+〉(x) = f
(−k)
〈n+k,+〉

(x) as required.

Thus, by induction, (iv) is true completing the proof of the theorem. �
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[3] Fejzić H., The Peano derivatives, Doct. Dissertation, Michigan State University, 1992.
[4] Fejzić H., On generalized Peano and Peano derivatives, Fund. Math. 143 (1993), 55–74.
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[8] Lee C.-M., Generalizations of Cesàro continuous functions and integrals of Perron type,
Trans. Amer. Math. Soc. 266 (1981), 461–481.

[9] Lee C.-M., On absolute Peano derivatives, Real Anal. Exchange 8 (1982–3), 228–243.
[10] Lee C.-M.,On generalized Peano derivatives, Trans. Amer. Math. Soc. 275 (1983), 381–396.
[11] Lee C.-M., On generalizations of exact Peano derivatives, Contemp. Math. 42 (1985), 97–

103.
[12] Mukhopadhyay S.N., Mitra S., Measurability of Peano derivatives and approximate Peano

derivatives, Real Anal. Exchange 20 (1994–5), 768–775.
[13] Oliver H.W., The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444–456.
[14] Svetic R.E., Volkmer H., On the ultimate Peano derivative, J. Math. Anal. Appl. 218

(1998), 439–452.
[15] Verblunsky S., On the Peano derivatives, Proc. London Math. Soc. 22 (1971), 313–324.
[16] Weil C.E., The Peano notion of higher order differentiation, Math. Japon. 42 (1995), 587–

600.
[17] Widder D.V., An Introduction to Transform Theory, Academic Press, New York, 1971.

Department of Mathematics, Michigan State University, East Lansing,

MI 48824-1027, USA

E-mail : rsvetic@math.msu.edu

(Received May 4, 2000)


		webmaster@dml.cz
	2012-04-30T20:21:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




