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Multipoint boundary value problems for discrete equations
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Abstract. In this work we establish existence results for solutions to multipoint bound-

ary value problems for second order difference equations with fully nonlinear boundary
conditions involving two, three and four points. Our results are also applied to systems.
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1. Introduction

In this work we establish existence results for solutions to multipoint boundary
value problems for second order difference equations with fully nonlinear boundary
conditions involving two, three and four points. Our results are also applied to
systems.
The problem under consideration is

y(i+ 1)− 2y(i) + y(i − 1) = f(i, y(i)), i = 1, . . . , n − 1,(1)

(0, 0) = G(y(0), y(n), y(c), y(d)), c, d ∈ {1, . . . , n − 1},(2)

where f is continuous and nonlinear. The equation defining the boundary con-
ditions G is continuous and may be nonlinear. Note that we use the backward
difference y(i)− y(i − 1) for i = 1, . . . , n.

By a solution of (1) we mean a vector ȳ = (y(0), . . . , y(n)) ∈ R
n+1 satisfying

(1) for i = 1, . . . , n − 1.
As stated by Agarwal in [1] and [2], the discretization of a two-point bound-

ary value problem for ordinary differential equations gives rise to discrete prob-
lems and this can lead to certain fundamental changes. For example, two-point
boundary conditions involving derivatives for the continuous case lead to three
or four-point boundary conditions for the discrete problem and thus (2) deserves
particular attention when c = 1 and d = n − 1. In [1] Agarwal provides some
excellent examples illustrating that even though the continuous problem has a so-
lution, its discrete analogue may not. Thus the question of existence of solutions
to (1), (2) is naturally raised.
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Motivated by [1], [2], [4], [5] and [6] in this paper we formulate some existence
theorems for solutions to (1), (2).
The methods used throughout the work include discrete lower and discrete up-

per solutions, and we incorporate a degree-based relationship between the bound-
ary conditions and the discrete lower and upper solutions, known as discrete com-
patibility. Once this method of discrete compatibility is introduced, most of the
standard existence results in the literature for two-point boundary value prob-
lems will have analogues for discrete equations subject to four-point boundary
conditions, provided that the appropriate assumptions concerning discrete lower
and discrete upper solutions are made. The compatibility conditions are usually
quite easy to identify.
As opposed to the approach of various fixed point theorems in [7] and [17], we

employ degree theoretic arguments using homotopy methods.
Special cases of our theory include the boundary conditions

G = (y(0), y(n)) = (0, 0),(3)

G = (y(c)− y(0), y(n)) = (0, 0), c ∈ {1, . . . , n − 1},(4)

G = (y(c)− y(0), y(n)− y(d)) = (0, 0), c, d ∈ {1, . . . , n − 1}.(5)

Our results also apply to the inhomogeneous cases of the above and moreover,
our theory may be applied to the case where G is nonlinear.
We also apply our theory to systems of equations. These generalizations in-

clude the use of discrete lower and discrete upper solutions for discrete systems
of equations.
For additional information regarding discrete equations we refer the reader to

the excellent texts by Agarwal [3], Kelley and Peterson [11] or Lakshmikantham
and Trigiante [13].

2. Definitions and preliminary results

We now introduce some notation. We denote the boundary of a set A by ∂A
and the closure of A by Ā. We denote C(A;B) to be the space of continuous
functions mapping from A to B endowed with the maximum norm. If B = R

then we omit the B. For any vector s̄ = {s(i)}n
i=0 ∈ R

n+1 we write s̄ ≤ z̄ if
s(i) ≤ z(i) for all i = 0, . . . , n.

If A is a bounded, open subset of Rd, q ∈ R
d, f ∈ C(Ā;Rd) and q /∈ f(∂A) we

denote the Brouwer degree of f at q relative to A by d(f, A, q).
Our existence theorems require the use of discrete lower and discrete upper

solutions.

Definition 1. We call ᾱ (β̄) a discrete lower (discrete upper) solution for (1) if

α(i+ 1)− 2α(i) + α(i − 1) ≥ f(i, α(i)),

(β(i+ 1)− 2β(i) + β(i − 1) ≤ f(i, β(i)), ) for all i = 1, . . . , n − 1.
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We say ᾱ (β̄) is a strict discrete lower (strict discrete upper) solution for (1) if
the above inequalities are strict. We set ∆d = (α(0), β(0))× (α(n), β(n)) and we
will refer to the pair ᾱ, β̄ as nondegenerate if α(0) < β(0) and α(n) < β(n).

Existence proofs for boundary value problems commonly employ modifications
on f . We will make the necessary modifications by using the following functions.

Definition 2. If a ≤ b are given, let π : R → [a, b] be (the retraction) given by
π(y, a, b) = max{min{b, y}, a}.
Let K ∈ C(R; [−1, 1]) satisfy

K(t) = 1, t > 1,(i)

K(t) = t, −1 ≤ t ≤ 1,(iii)

K(t) = −1, t < −1.(iii)

If a ≤ b are given, let T ∈ C(R) be given by T (y, a, b) = K(y − π(y, a, b)). Let
l(i, y(i)) = f(i, π(y(i), α(i), β(i))) for i = 0, . . . , n and let

k(i, y(i)) = (1− |T (y(i), α(i), β(i))|) l(i, y(i))

+ T (y(i), α(i), β(i)) (|l(i, y(i))|+ 1) .

Let

Q(i, j) =

{

(1− i)j, for 0 ≤ j ≤ i ≤ n,

(1− j)i, for 0 ≤ i ≤ j ≤ n,

and w̄(C, D)(i) = [C(n − i) + Di]/n for i = 0, . . . , n where C, D ∈ R. Define
C : Rn+1 → R

n+1 by

C(ȳ)(i) =

n−1
∑

j=1

Q(i, j)y(j), for i = 0, . . . , n and ȳ ∈ R
n+1.

Clearly C is continuous. Given ḡ ∈ R
n+1 then ȳ is a solution of

y(i+ 1)− 2y(i) + y(i − 1) = g(i), for i = 1, . . . , n − 1,

y(0) = C, y(n) = D,

if and only if ȳ = C(ḡ) + w̄(C, D).

3. Nonlinear boundary conditions

We now introduce the concept of discrete compatible boundary conditions for
two, three and four points. The idea is a discrete analogue to the definition
of compatibility for boundary value problems for ordinary differential equations
from [15].
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Definition 3. Let G ∈ C(∆̄d×R
2;R2). We say G is strongly discrete compatible

with ᾱ and β̄ if for all continuous functions φc : [α(0), β(0)] → [α(c), β(c)] and
φd : [α(n), β(n)]→ [α(d), β(d)] we have

G(C, D, φc(C), φd(D)) = G(C, D) 6= (0, 0) for all (C, D) ∈ ∂∆d,

d(G,∆d, (0, 0)) 6= 0.

The degree-based relationship between the boundary conditions and the dis-
crete lower and discrete upper solutions which defines discrete compatibility ap-
plies to well-known boundary conditions already in the literature. Special cases
include (3), (4) and (5) and moreover G may be nonlinear.

4. Existence of solutions

The following lemma mirrors standard results in the literature concerning so-
lutions to the modified difference equation (see [3] or [5]).

Lemma 1. Let ᾱ ≤ β̄ be nondegenerate discrete lower and upper solutions
for (1). Let k(i, y(i)) be the modification to f(i, y(i)) given in Definition 2. Let
ȳ ∈ R

n+1 be any solution to

(6) y(i+ 1)− 2y(i) + y(i − 1) = k(i, y(i)), i = 1, . . . , n − 1,

which satisfies α(0) ≤ y(0) ≤ β(0) and α(n) ≤ y(n) ≤ β(n). Then ȳ satisfies
ᾱ ≤ ȳ ≤ β̄.

Proof: Now suppose ȳ is a solution of (6). Suppose y(i) < α(i) for some
i ∈ {0, . . . , n}. From our assumptions we may assume that i ∈ {1, . . . , n−1} and
that α(i)−y(i) attains its positive maximum at i = m for somem ∈ {1, . . . , n−1}.
Thus

(7) α(m+ 1)− 2α(m) + α(m − 1)− [y(m+ 1)− 2y(m) + y(m − 1)] ≤ 0

and α(m)− y(m) > 0. Therefore

y(m+ 1)− 2y(m) + y(m − 1)

= k(m, y(m))

= (1− |T (y(m), α(m), β(m))|)l(m, y(m))

+ T (y(m), α(m), β(m))(|l(m, y(m))| + 1)

= (1− |K(y(m)− α(m))|)f(m, α(m))

+ K(y(m)− α(m))(|f(m, α(m))| + 1)

< f(m, α(m)) ≤ α(m+ 1)− 2α(m) + y(m − 1)

which contradicts (7). Thus α(i) ≤ y(i) for all i = 0, . . . , n and similarly ȳ ≤ β̄.
�
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Remark 1. It follows from Lemma 1 that any solution to (6) is also a solution
to (1).

Lemma 2. Let the assumptions of Lemma 1 hold. If G is strongly discrete
compatible with ᾱ and β̄ then any solution ȳ to (6) and (2) satisfies y(0) 6=
α(0), β(0) and y(n) 6= α(n), β(n).

Proof: Assume y(0) = α(0). Let φc and φd be continuous functions as in
Definition 3. Take C = y(0) = α(0); thus we have G(C, D) = G(α(0), D) = (0, 0)
which is a contradiction to the compatibility conditions since G 6= (0, 0) on ∂∆d.
Thus y(0) 6= α(0). The other cases follow in a similar fashion. �

We now present our first existence theorem.

Theorem 1. Let f ∈ C({0, 1, . . . , n} × R;R). Assume that there exist non-
degenerate discrete lower and discrete upper solutions ᾱ ≤ β̄ for (1) and that
G ∈ C(∆̄d × R

2;R2) is strongly discrete compatible with ᾱ and β̄. Then there
exists a solution ȳ to problem (1), (2) with ᾱ ≤ ȳ ≤ β̄.

Proof: Our proof draws on discrete variants of the ideas from [14] and [15].
Consider

(8) y(i+ 1)− 2y(i) + y(i − 1) = k(i, y(i)), i = 1, . . . , n − 1,

where k(i, y(i)) is the modification to f(i, y(i)) given in Definition 2. Consider
(8) together with the boundary conditions (2). From Lemma 1 a solution, if it
exists, actually lies in the region where f is unmodified and hence is a solution to
(1), (2) as well.
Take ᾱε ∈ R

n+1 with αε(i) = min{α(i) : i = 0, . . . , n}−1 and β̄ε ∈ R
n+1 with

βε(i) = max{β(i) : i = 0, . . . , n}+ 1. Now

T (αε(i), α(i), β(i)) = K(αε(i)− π(αε(i), α(i), β(i)))

= K(αε(i)− α(i)) = K(−1) = −1.

Hence

αε(i+ 1)− 2αε(i) + αε(i − 1) = 0 > −(|l(i, αε(i)|+ 1)

= k(i, αε(i)), for i = 1, . . . , n − 1.

Thus ᾱε is a strict discrete lower solution for (8). Similarly, β̄ε is a strict dis-
crete upper solution for (8). We show problem (8) and (2) has a solution with
(y(0), y(n)) ∈ ∆̄d. Since f and k agree in this region this is the required solution
of problem (1) and (2). Set

Ωε = {ȳ ∈ R
n+1 : ᾱε < ȳ < β̄ε}
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and Γε = Ωε ×∆d. Define K : R
n+1 → R

n+1 by

K(ȳ)(i) = k(i, y(i)), for i = 0, . . . , n and ȳ ∈ R
n+1.

Let φc and φd be continuous functions as in Definition 3. Define H : Γ̄ε × [0, 1]→
R

n+3 by

H(ȳ, C, D, λ) =
(

ȳ − 3λw̄(C, D) − (1− 3λ)(ᾱε + β̄ε)/2,G(C, D)
)

for 0 ≤ λ ≤ 1/3,

H(ȳ, C, D, λ) = (ȳ − 3(λ − 1/3)CK(ȳ)− w̄(C, D),G(C, D))

for 1/3 ≤ λ ≤ 2/3, and

H(ȳ, C, D, λ) = (ȳ − CK(ȳ)− w̄(C, D),S(ȳ, C, D, λ))

for 2/3 ≤ λ ≤ 1, where

S(ȳ, C, D, λ) = G(C, D, 3(λ − 2/3)(y(c), y(d)) + 3(1− λ)(φc(C), φd(D))).

Clearly H is continuous.
It is easy to see that ȳ is a solution of problem (8), (2) with (ȳ, y(0), y(n)) ∈ Γε

if and only if
H(ȳ, y(0), y(n), 1) = 0.

Now if there is a solution with (ȳ, y(0), y(n)) ∈ ∂Γε then there is nothing to prove
so we assume there is no solution in ∂Γε. We showH is an admissible homotopy for
the Brouwer degree on Γε at 0. We argue by contradiction and assume solutions
exist to H(ȳ, C, D, λ) = 0 with λ ∈ [0, 1] and (ȳ, C, D) ∈ ∂Γε. We investigate
the cases λ ∈ [2/3, 1] and [1/3, 2/3); the case λ ∈ [0, 1/3) is trivial because
G(C, D) 6= (0, 0) with (C, D) ∈ ∂∆d and ȳ−3λw̄(C, D)− (1−3λ)(ᾱε+ β̄ε)/2 6= 0
for ȳ ∈ ∂Ωε.

Case (i) λ ∈ [2/3, 1].

By assumption there is no solution with λ = 1, so we assume there is a solution
(ȳ, C, D) with λ ∈ [2/3, 1), ᾱ ≤ ȳ ≤ β̄, y(0) = C and y(n) = D.
Firstly, let us assume that (C, D) ∈ ∂∆d. If α(0) = y(0) then we see that

S 6= (0, 0) which is a contradiction. The other cases follow similarly. Thus
(C, D) /∈ ∂∆d.
Secondly, let us assume that ȳ ∈ ∂Ωε. Assume y(i) = αε(i) for some i ∈

{0, . . . , n}. Since y(0) ≥ α(0) > αε(0) and y(n) ≥ α(n) > αε(n) it follows that
i ∈ {1, . . . , n−1}. Thus y(i+1)−2y(i)+y(i−1)≥ αε(i+1)−2αε(i)+αε(i−1) = 0.
However, from the definition of k we have

y(i+ 1)− 2y(i) + y(i − 1) = k(i, y(i)) = −(|f(i, α(i))|+ 1) < 0,
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which is a contradiction. Thus y(i) 6= αε(i) for any i ∈ {0, . . . , n}. Similarly,
the assumption y(i) = βε(i) for some i ∈ {0, . . . , n} also leads to a contradiction.
Thus ȳ /∈ ∂Ωε and there are no solutions of H(ȳ, C, D, λ) = 0 with λ ∈ [2/3, 1]
and (ȳ, C, D) ∈ ∂Γε.

Case (ii) λ ∈ [1/3, 2/3].

Since G is strongly discrete compatible, from the previous lemma there are no
solutions (ȳ, C, D) to H = 0 with (C, D) ∈ ∂∆d. The proof of the case ȳ ∈ ∂Ωε

leads to a contradiction in a similar way as for λ ∈ [2/3, 1).
Thus H is an admissible homotopy for the degree and since H(·, 0) = (I − b̄,G)

where I is the identity on R
n+1 and b̄ ∈ Ωε is a constant vector, it follows that

d(H(·, 1),Γε,0) = d(H(·, 0),Γε,0)

= d(G,∆d, (0, 0)) 6= 0.

Thus there is a solution (ȳ, C, D) ∈ Γε ofH(ȳ, C, D, 1) = 0 and hence a solution
ȳ ∈ R

n+1 to problem (1) and (2). This concludes our proof. �

Remark 2. If G = (y(0), y(n)) = (0, 0) then Theorem 1 coincides with certain
results in [2] and [5].

5. Some special boundary conditions

We now give conditions for discrete compatibility for special cases of G. The
following is a discrete analogue of [15, Lemma 6].

Lemma 3. Let ᾱ ≤ β̄ be nondegenerate discrete lower and discrete upper solu-
tions respectively for (1) and let the boundary conditions be given by

(9) G = (y(c)− y(0), y(n)− y(d)) = (0, 0), c, d ∈ {1, . . . , n − 1}.

Then G is strongly discrete compatible if

(10) α(0) < α(c), α(n) < α(d), β(0) > β(c), β(n) > β(d).

Proof: Suppose (10) holds. Let G = (G0, G1), where

G0(C, D) = y(c)− C, and G1(C, D) = D − y(d).

Let φc and φd be given as in Definition 3. Then

G0(C, D) = φc(C)− C, G1(C, D) = D − φd(D).

This implies

G0(α(0), D) > 0, G0(β(0), D) < 0, G1(C, α(n)) < 0, G1(C, β(n)) > 0

and, hence, d(G,∆d, (0, 0)) = 1 6= 0. Thus G is strongly discrete compatible. �
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Lemma 4. Let ᾱ ≤ β̄ be nondegenerate discrete lower and discrete upper solu-
tions, respectively, for (1) and let the boundary conditions be given by

(11) G = (y(c)− y(0), y(n)− y(d)) = (0, 0), c, d ∈ {1, . . . , n − 1}.

If G is strongly discrete compatible then

(12) α(0) ≤ α(c), α(n) ≤ α(d), β(0) ≥ β(c), β(n) ≥ β(d).

Proof: Assume α(0) > α(c). Let φc(C) = α(c) and φd(D) = α(d) for all
(C, D) ∈ ∆̄d. Then

G(C, D) = (φc(C) − C, D − φd(D))

= (α(c) − C, D − α(d)).

This implies

d(G,∆d, (0, 0)) = d(G0, (α(0), β(0)), 0)d(G1, (α(n), β(n)), 0) = 0,

since G0(C) < 0 for all C ∈ [α(0), β(0)] and thus α(0) ≤ α(c). Similarly, we get
β(0) ≥ β(c), α(n) ≤ α(d) and β(n) ≥ β(d). �

6. Application to systems

We now apply some theory from the previous section to systems of equations.
Consider

(13) ~y(i+ 1)− 2~y(i) + ~y(i − 1) = ~f(i, ~y(i)), i = 1, . . . , n − 1,

where ~f ∈ C({0, 1, . . . , n} × R
d;Rd) and ~y = (~y(0), . . . , ~y(n)) ∈ R

(n+1)d.

For vectors ~y(i) ∈ R
d we denote the k-th component by yk(i) for each k =

1, . . . , d.
Our first step is to extend the definitions of discrete lower and discrete upper

solutions, following the ideas of [12] for the continuous case.

Definition 4. We call ~̄α (~̄β) a discrete lower (discrete upper) solution for (13) if
for each i = 1, . . . , n − 1 and k = 1, . . . , d

αk(i+ 1)− 2αk(i) + αk(i − 1) ≥ fk(i, ~σ(i)),

for all ~α(i) ≤ ~σ(i) with σk(i) = αk(i),

βk(i+ 1)− 2βk(i) + βk(i − 1) ≤ fk(i, ~σ(i)),

for all ~β(i) ≥ ~σ(i) with σk(i) = βk(i).
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Theorem 2. Let ~f ∈ C({0, 1, . . . , n} × R
d;Rd). Assume that there exist non-

degenerate discrete lower and discrete upper solutions ~α ≤ ~β for (13) and that

G ∈ C(∆̄d × R
2d;R2d) is strongly discrete compatible with ~α and ~β. Then there

exists a solution ~y to problem (13), (2) with ~α ≤ ~y ≤ ~β.

Proof: The proof follows similar lines as that of Theorem 1 and is hence omitted.
�
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