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On the Dirichlet problem for

functions of the first Baire class

Jiř́i Spurný

Abstract. Let H be a simplicial function space on a metric compact space X. Then the
Choquet boundary ChX of H is an Fσ-set if and only if given any bounded Baire-one
function f on ChX there is an H-affine bounded Baire-one function h on X such that

h = f on ChX. This theorem yields an answer to a problem of F. Jellett from [8] in the
case of a metrizable set X.

Keywords: weak Dirichlet problem, function space, Choquet simplexes, Baire-one func-
tions

Classification: 46A55, 31B05, 26A21

1. Introduction

Let H be a function space on a compact metric space X . By this we mean a
linear subspace of C(X) (the space of all real-valued continuous functions on X
equipped with the sup-norm ||.||) containing constant functions and separating
points of X . Let M1(X) denote the set of all probability Radon measures on
X and εx the Dirac measure at x ∈ X . Let further Mx(H) be the set of all
H-representing measures for x ∈ X , i.e.

Mx(H) = {µ ∈ M1(X) : µ(h) = h(x) for any h ∈ H}.

A bounded Borel function f is called H-affine if it satisfies µ(f) = f(x) for any
x ∈ X and µ ∈ Mx(H). The space of all H-affine continuous functions will
be denoted by A(H). The Choquet boundary ChX of H is defined as the set
{x ∈ X :Mx(H) = {εx}}. The Choquet boundary is a Gδ-set and the Choquet
representation theorem guarantees for any x ∈ X the existence of a measure
µ ∈ Mx(H) such that µ(X \ ChX) = 0. We say that (X,H) is a simplicial space
if for any x ∈ X there is a unique measure representing x carried by the Choquet
boundary.
We introduce main examples of function spaces.
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Examples. 1. Continuous functions. Let X be a metric compact space. For
H = C(X) we have ChX = X and C(X) is a simplicial space because there are
no H-representing measures except Dirac measures.

2. Affine functions. Let X be a metrizable convex compact subset of a Hausdorff
locally convex space E and H the linear space A(X) of all continuous affine
functions on X . In this case the Choquet boundary ChX coincides with the set
extX of all extreme points of X . Then (X,A(X)) is a simplicial space if and
only if X is a Choquet simplex (for a definition of a Choquet simplex see e.g. [1]
or [7]).

3. Harmonic functions. Let Ω be a bounded open subset of a Euclidean space R
n,

X the closure Ω of Ω and H the linear space H(Ω) of all continuous functions on
Ω which are harmonic on Ω. We will study this example more deeply in Section 3.

A well-known theorem (cf. [11]) in the case of affine functions on a Choquet
simplex X asserts that ChX is closed if and only if any continuous function f on
ChX can be extended to an affine continuous function h on X . A similar result
can be obtained for general function spaces. This paper answers the question (in
the case of a metrizable space X) asked by F. Jellett in [8]. He posed a problem
whether a similar assertion can be proved for Fσ-sets and functions of the first
Baire class. In the sequel we prove a theorem which says that for a simplicial space
(X,H), the Choquet boundary is an Fσ-set if and only if any bounded function
of the first Baire class on ChX can be extended to a bounded H-affine function
h of the first Baire class on X .

2. Results

Let X be a metric space. We write Bb(X) for the space of all bounded real-
valued Borel functions on X . Let f be a real-valued function on X . Then the
function f is of the first Baire class or a Baire-one function (written f ∈ B1(X))
if f is a pointwise limit of a sequence {fn} of continuous functions on X . Let us

denote the set of all bounded functions of the first Baire class on X by Bb
1(X).

Due to [10, Theorem 2.12], a function f is of the first Baire class on a compact
metric space X if and only if for every nonempty closed set F and every couple
a < b, the sets {x ∈ F : f(x) < a} and {x ∈ F : f(x) > b} are not simultaneously
dense in F (the [D–P] condition). A set B is called ambivalent if it is both an
Fσ and Gδ-set, or equivalently, if the characteristic function χB of the set B is
in B1(X). Due to the [D–P] condition, a subset B of a metric compact space is
ambivalent if and only if for every nonempty closed set F , the sets F ∩ B and
F \ B are not simultaneously dense in F (the [A] condition).

A metric space X is said to be a Baire space if and only if the intersection of
each countable family of dense open sets in X is dense. A set A ⊂ X is residual
if its complement X \A is a set of the first category, i.e. X \A =

⋃∞
n=1An where
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An is a nowhere dense subset of X for every integer n. We will employ the fact
that a Gδ-subspace F of a complete metric space X is a Baire space. Note also
that a residual subset of a Baire space is dense. A suitable reference for details
on Baire spaces is [6].

For a set B in a metric space X let us denote by der(B) the set of all accumu-
lation points of B.

Theorem. Let (X,H) be a simplicial space. Then the following assertions are
equivalent:

(i) ChX is an Fσ-set,

(ii) given f ∈ Bb
1(ChX) there exists an H-affine function h ∈ Bb

1(X) such that
h = f on ChX.

In what follows we assume that (X,H) is a simplicial space. Let us denote by µx

the unique probability measure on X representing a point x supported by ChX.
We will consider the operator T :Bb(X)→ Bb(X) defined by Tf(x) =

∫

X f dµx

for f ∈ Bb(X). According to [11, Proposition 9.10], T maps C(X) into Bb
1(X).

Thus T maps a bounded Borel function f onX onto a bounded Borel function Tf .
Let us notice that Tf(x) = f(x) for x ∈ ChX.

Let B be a Borel set, ChX ⊂ B ⊂ X (in particular B = ChX). Given a
bounded Borel function g on B, define Tg as Tf , where a bounded Borel function
f on X is defined by f = g on B and f = 0 elsewhere. Since any measure µx is
carried by the Choquet boundary we see that Tg(x) = Tf(x) = µx(f) = µx(g)
for every point x ∈ X .

Lemma 1. Let f ∈ Bb(X). Then Tf is an H-affine function on X .

Proof: Given y ∈ X and λ ∈ My(H), define a linear functional µ on C(X)
by the formula µ(g) =

∫

X Tg dλ, g ∈ C(X). Then µ is obviously a probability
measure representing the point y. The equality

µ(ChX) =

∫

X
µx(ChX) dλ =

∫

X
1 dλ = 1

now implies that µ is supported by ChX. Therefore µ = µy because (X,H) is a
simplicial space. Thus we obtain

λ(Tf) =

∫

X
µx(f) dλ = µ(f) = µy(f) = Tf(y)

and the proof is complete. �
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Lemma 2. Suppose that f ∈ Bb(ChX) and F ∈ Bb(X) is an H-affine function
such that F = f on ChX. Then F = Tf .

Proof: Pick y ∈ X . Since F is H-affine, we have

F (y) =

∫

ChX
F (x) dµy(x) =

∫

ChX
f(x) dµy(x) = Tf(y).

�

Lemma 3. Let ChX be an Fσ-set and f ∈ Bb
1(ChX). Then Tf is an H-affine

function of the first Baire class.

Proof: Due to the assumption we write ChX =
⋃∞

n=1 Fn where Fn are compact
sets such that F1 ⊂ F2 ⊂ · · · ⊂ ChX. Let {fn}∞n=1 be a sequence of continuous
functions on ChX converging pointwise to f . We may assume that ‖f‖, ‖fn‖ are
bounded by a positive number M . Since (X,H) is a simplicial space, according
to [3, Corollary 3.6], there exist H-affine continuous functions hn on X such that
hn = fn on ChX and ‖hn‖ = ‖fn‖.
The proof will be completed by showing that hn(x) → Tf(x) for all x ∈ X .

For fixed x ∈ X and ε positive choose an integer n0 such that
∫

X |f −fn| dµx < ε
and µx(Fn) > 1− ε for all n ≥ n0. For such n we have

|Tf(x)− hn(x)| =
∣

∣

∣

∫

X
(f − hn) dµx

∣

∣

∣

≤

∫

X
|f − fn| dµx +

∫

X
|fn − hn| dµx

≤ ε+

∫

ChX \Fn0

2M dµx ≤ ε(1 + 2M),

which proves the lemma. �

We start the main part of the proof of the Theorem with the following lemma.

Lemma 4. Let F be a metric compact space and G be a subset of F such that
G = F = F \ G. Let K ⊂ G be a closed subset of F . Then K is nowhere dense
in G.

Proof: Since K is a closed set in F , it is a closed subset of G as well. Suppose
that K is not nowhere dense in G. Find a nonempty open set U ⊂ F such that
U ∩ G 6= ∅ and U ∩ G ⊂ K. Since F \ G is dense in F , we may find a point
x ∈ U ∩ (F \ G). Due to density of G in F , there is a sequence {xn} of points of
G such that x = limn→∞ xn. Since x ∈ U and U is open in F , we may assume
that xn ∈ U ∩ G for each integer n. Since U ∩ G ⊂ K and K is a closed set,
x ∈ K ⊂ G. This contradiction concludes the proof. �
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Lemma 5. If ChX is not an Fσ-set, then there exists a function f ∈ Bb
1(X)

such that Tf /∈ Bb
1(X).

Proof: Suppose that the Choquet boundary ChX of H is not an Fσ-set. Thus
it is not an ambivalent set and according to condition [A] we can find a nonempty

closed set F satisfying F = F ∩ ChX = F \ ChX. Let B denote the set {x ∈
F \ ChX : µx(F ) ≥

1
2}. Suppose that B is not dense in F . Then there exists an

open set U ⊂ X satisfying U ∩ F 6= ∅ and U ∩ F ∩ B = ∅. The function f = χF

is of the first Baire class. Since

Tf(x)

{

= 1 for x ∈ F ∩ChX∩U,

≤ 1
2 for x ∈ (F \ ChX) ∩ U,

we see that Tf is not in Bb
1(X) due to condition [D–P] applied to the set U ∩ F .

Thus we may suppose that B is dense in F .
Choose a countable set S1 ⊂ B dense in B, S1 = {xn}∞n=1. Denote µn = µxn

.
Fix an integer n. Since

µn(F ) ≥
1

2
and µn(F \ ChX) = 0,

inner reqularity of Radon measures allows us to find a compact subset Kn of X
such that Kn ⊂ F ∩ ChX and µn(Kn) ≥

1
4 .

Set Y = F ∩ ChX and K =
⋃∞

n=1Kn. Due to Lemma 4 the set K is a
countable union of closed nowhere dense subsets of Y . Hence K is of the first
Baire category in Y . Since Y is a Gδ-subset of a compact metric space, it is a
Baire space. Since the set Y \K is residual in Y , it is dense in Y . Due to density
of Y in F we obtain that Y \ K is dense in F . Find a countable set S2 ⊂ Y \ K
such that S2 is dense in F .
Thus we have two countable sets S1, S2 such that

S1 ⊂ F \ ChX,

S2 ⊂ F ∩ (ChX \K),

and both of them are dense in F . Let us denote F0 = {x1}. We will construct by
induction nonempty sets {Fn}∞n=1 and nonempty open sets {Vn}∞n=1, {Un}∞n=1
such that for every integer n

(i)
⋃n

k=0 Fk is closed,
(ii)

⋃n
k=0 Fk ⊂

⋂n
k=1 Uk,

(iii) Kn ⊂ Vn,
(iv) Un ∩ Vn = ∅,
(v) der(Fn) ∩ S1 = Fn−1 and der(Fn) ∩ S2 = Fn−1,
(vi) Fn ⊂ S1 ∪ S2.



726 J. Spurný

First, let us find disjoint open sets U1, V1 such that x1 ∈ U1 and K1 ⊂ V1.
Since S1 and S2 are dense in F , there exists a set F1 ⊂ S1 ∪ S2 with F1 ⊂ U1,
der(F1 ∩ S1) = {x1} and der(F1 ∩ S2) = {x1}. Then all the required conditions
are clearly satisfied.
Suppose that Fj , Vj , Uj with desired properties have been constructed for

j ≤ n. Since S1∪S2 is disjoint fromK, condition (vi) implies thatKn+1 is disjoint
from

⋃n
k=0 Fk. Find two disjoint open sets Un+1, Vn+1 satisfying

⋃n
k=0 Fk ⊂

Un+1 and Kn+1 ⊂ Vn+1. Let us construct Fn+1 ⊂ S1 ∪ S2 such that Fn+1 ⊂
⋂n+1

k=1 Uk and der(Fn+1 ∩ S1) = Fn, der(Fn+1 ∩ S2) = Fn. Then all the required
conditions are satisfied.
Put H =

⋃∞
n=0 Fn. Conditions (ii) and (iv) imply that H ∩

⋃∞
n=1 Vn = ∅.

Thus the set H is a closed set disjoint with K. Moreover, by (v) both sets H ∩S1
and H ∩ S2 are dense in H . Thus H ∩ S1 = H = H ∩ S2. Set f = χ

H
. Then f

is a function of the first Baire class on X . If x is in H ∩ S1 then

µn(H) ≤ µn(X \ K) ≤ µn(X \ Kn) ≤
3

4
,

which implies

Tf(x)

{

= 1, x ∈ H ∩ S2,

≤ 3
4 , x ∈ H ∩ S1.

By applying condition [D–P] to the set H , we get that Tf is not a function of the
first Baire class and the proof is complete. �

Proof of the Theorem: The implication (i)⇒(ii) is a consequence of Lemma
1 and Lemma 3. For the converse, suppose that ChX is not an Fσ-set. Due to
Lemma 5 there exists a function f ∈ Bb

1(X) such that Tf is not in Bb
1(X). Then

g = f |ChX is clearly a Baire-one function on ChX. If F is an H-affine Borel
function equal to g on ChX then Lemma 2 yields F = Tg = Tf . But Tf is not
a function of the first Baire class and this proves the Theorem. �

3. An application in potential theory

Let Ω be an open bounded subset of R
n and let the function space H consist

of all functions continuous on Ω harmonic on Ω. For a real-valued function f
defined on the boundary ∂Ω we denote by Hf the PWB-solution of the Dirichlet
problem on Ω with the boundary condition f provided it exists. Given x ∈ Ω,
we have Hf(x) = λx(f) where λx is a harmonic measure representing the point
x. In this case the Choquet boundary of H coincides with the set ∂regΩ of all
regular points of Ω. According to a deep result of J. Bliedtner and W. Hansen [4]
the function space (Ω,H) is simplicial. Moreover, H = A(H) and for any x ∈ Ω
the measure µx equals λx.
If we reformulate the general results into the language of potential theory we

get the following assertions.
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Proposition 1. The set of regular points ∂regΩ is closed if and only if for any

continuous function f defined on ∂regΩ there exists a function h continuous on Ω
and harmonic on Ω such that h = f on ∂regΩ.

Proof: Follows by [1, Theorem II.4.3]. �

Proposition 2. The set of all regular points ∂regΩ is an Fσ-set if and only if for

any bounded function f of the first Baire class defined on ∂regΩ there exists a

bounded H(Ω)-affine function h of the first Baire class on Ω such that h = f on
∂regΩ.

Proof: The proof is a direct consequence of the Theorem. �

4. Final remarks and open problems

1. It seems to be an open problem whether or not the Theorem is valid if we
omit the condition of metrizability of the space X . If X is a compact Hausdorff
space only then the Choquet boundary ChX need not be a Borel set and the
situation is much more complicated.

2. The first implication of the Theorem has been known since sixties. The
proof can be found e.g. in [5] and [9].

3. Consider again the function space of Example 3 (harmonic functions). Fol-
lowing a definition of H. Bauer [2], the set Ω is termed semiregular if the PWB-
solutionHf can be continuously extended to the closure Ω of Ω for any continuous
function f on ∂Ω. Proposition 1 tells us that Ω is semiregular if and only if the
set ∂regΩ is closed.

4. Let X be a compact convex subset of a locally convex space E. If X is
a Choquet simplex and the set of all extreme point extX is closed we call X
a Bauer simplex . Alfsen [1] is a suitable reference for further details on Bauer
simplexes.
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