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Forcing with ideals generated by closed sets

Jindřich Zapletal

Abstract. Consider the poset PI = Borel(R) \ I where I is an arbitrary σ-ideal σ-
generated by a projective collection of closed sets. Then the PI extension is given
by a single real r of an almost minimal degree: every real s ∈ V [r] is Cohen-generic over
V or V [s] = V [r].
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0. Introduction

Under suitable large cardinal hypotheses, every proper definable forcing for
adding a single real is forcing-equivalent to the poset Borel(R) \ I ordered by
inclusion, for a suitable σ-ideal I ([Z2]). In this paper I will analyze the case of σ-
ideals I σ-generated by a projective collection of closed sets. For such an ideal the
forcing Borel(R) \ I is always proper. The representatives include some familiar
posets (Sacks real = Borel(R) minus the countable sets, Miller real = Borel(ωω)
minus the modulo finite bounded sets, Cohen real = Borel(R) minus the meager
sets) as well as posets as yet not used nor understood. Consider for example
the forcing associated with the σ-ideal σ-generated by the closed measure zero
sets ([B]), or with the σ-ideal σ-generated by closed sets of some fixed Hausdorff
dimension.
The main result of this paper is

0.1 Theorem (ZFC+large cardinals). Let I be a σ-ideal σ-generated by a pro-
jective collection of closed sets. The poset PI = Borel(R) \ I is proper and adds
a single real rgen of an almost minimal degree: If V ⊆ V [s] ⊆ V [rgen] is an
intermediate model for some real s, then V [s] is a Cohen extension of V or else
V [s] = V [rgen].

However, the point of the paper is not exactly to prove this theorem. Rather,
the point is to expose certain technologies that connect the descriptive set theory
with the practice of definable proper forcing. Another point is to show that
there are certain posets about which one can prove quite a bit by virtue of the
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syntax of their definition, but (to date) one can prove absolutely nothing from
the combinatorics of the related objects.
The notation in the paper follows the set theoretic standard of [J]. AD denotes

the Axiom of Determinacy. If I is a σ-ideal on the reals the symbol PI denotes
the poset Borel(R)\ I ordered by inclusion. The real line R is construed to be the
set of all total functions from ω to ω. The large cardinal hypothesis needed for the
proof of Theorem 0.1 can be specified to be “infinitely many Woodin cardinals”
or less, depending on the descriptive complexity of the ideal I.

1. The results

1.1 Lemma. If I is a σ-ideal on the real line then PI forces “for some unique

real r the generic filter is just the set {BV : B is a Borel ground model coded set
of reals with r ∈ B}”.

Proof: Let ṙ be the PI -name for a real defined by ṙ(ň) ∈ m̌ if the set {s ∈ R :
s(n) = m} belongs to the generic filter. Note that this indeed defines a name for
a total function from ω to ω since the collections {{s ∈ R : s(n) = m} : m ∈ ω}
are maximal antichains in the poset PI for each integer n ∈ ω. Also note that if
any real is to be in the intersection of all Borel sets in the generic filter, it must
be ṙ. In order to complete the proof, it is enough to argue by induction on the
complexity of the Borel set B /∈ I that B  ṙ ∈ Ḃ where Ḃ is the Borel set in the
extension with the same Borel definition as B.
Now this is clearly true if B is a closed or a basic open set. Suppose B =

⋂
n An

and for all n ∈ ω, An  ṙ ∈ Ȧn has been proved. Then for all n ∈ ω B ⊂ An,
so B  ∀n ∈ ω ṙ ∈ Ȧn and B  ṙ ∈

⋂
n Ȧn = Ḃ as desired. And suppose that

B =
⋃

n An and for all n ∈ ω, An  ṙ ∈ Ȧn has been proved. The collection
{An : An /∈ I} is a predense set in PI below B — this simple observation uses the

σ-completeness of the ideal I. So B  ∃n ∈ ω ṙ ∈ Ȧn, and B  ṙ ∈
⋃

n Ȧn = Ḃ as
desired. Since all Borel sets are obtained from closed sets and basic open sets by
iterated applications of a countable intersection and union, the proof is complete.

�

The unique real from the statement of the previous lemma will be called the
PI -generic real and denoted by ṙgen. This real is forced to fall out of all ground
model Borel sets in the ideal I. Another standard piece of terminology: if M is
an elementary submodel of some large structure and r is a real such that the set
{B ∈ PI ∩ M : r ∈ B} is an M -generic filter on PI , then I will call the real r
M -generic. The following basic complexity calculation will be used in many places
in this paper.

1.2 Lemma. Let I be a σ-ideal, A ∈ PI a positive Borel set, ṡ a PI -name for a

real and M a countable elementary submodel of a large structure containing all

of the heretofore mentioned objects. Then

(1) the set A∗ = {r ∈ A : r is an M -generic real} is Borel,
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(2) the function r ∈ A∗ 7→ ṡ/r is Borel.

Proof: Let Bn : n ∈ ω be an enumeration of the set PI∩M . Let also Om : m ∈ ω
be an enumeration of all open dense subsets of the poset PI in the model M , and
let xm ∈ 2ω be the numbers defined by xm(n) = 1↔ Bm ∈ On. Clearly, the set
{〈r, x〉 : r ∈ A and ∀n r ∈ Bn ↔ x(n) = 1 and ∀m∃n xm(n) = 1 ∧ x(n) = 1} is
Borel, and the set A∗ is a one-to-one continuous image of this set — the image
under the projection to the first coordinate. Thus the set A∗ is Borel.

For (2) let ym ∈ 2ω be the function defined by ym(n) = 1 ↔ Bn  ṡ(m̌) = 1.
The set {〈r, x, s〉 : r ∈ A∗ and ∀n r ∈ Bn ↔ x(n) = 1 and ∀m s(m) = 1 ↔
∃n x(n) = 1∧ ym(n) = 1} is Borel and the function in question is the one-to-one
continuous image of this set, namely the image under the projection to the first
and third coordinate. Thus the function is Borel. �

1.3 Lemma. If I is a σ-ideal σ-generated by closed sets then the poset PI is

< ω1-proper.

Proof: Let me first show that the poset PI is proper. Suppose A ∈ PI is
an arbitrary condition and M is a countable elementary submodel of a large
enough structure containing all the relevant information. I must produce a master
condition A∗ ⊂ A for the model M . Consider the set A∗ of all M -generic reals
in A. This set is Borel by the previous lemma, and if it is I-positive, by Lemma 1.1
it forces rgen ∈ Ȧ∗, which is to say “Ġ ∩ M̌ ⊂ P̌I ∩ M̌ is M̌ -generic”, which is
to say that A∗ is a master condition for the model M . Note also that if B ⊂ A
is any other master condition for the model M , necessarily B \ A∗ ∈ I. So A∗ is
really the only candidate for the required master condition. The only thing left
to verify is A∗ /∈ I.

Suppose that {Cn : n ∈ ω} is a collection of closed sets in the ideal I. I must
produce a real r ∈ A∗ \

⋃
n Cn. Let Dn : n ∈ ω be a list of all open dense

subsets of the poset PI in the model M , and by induction on n ∈ ω build sets
A = A0 ⊃ A1 ⊃ A2 ⊃ . . . in the model M so that for every n ∈ ω, An+1 ∈ Dn

and An+1∩Cn = 0. To perform the inductive step, first choose a set An+0.5 ⊂ An

in M ∩Dn and then note that since the set An+0.5 \Cn is I-positive and the set
Cn is closed, there must be a basic open set On such that On ∩ Cn = 0 and
An+0.5∩On is still I-positive. But then the set An = An+0.5∩On is in the model
M and satisfies the inductive assumptions. Once the induction is complete, look
at the M -generic filter on PI ∩ M generated by the sequence of An’s. By the
previous lemma applied in the model M , the intersection of all the sets in this
filter is a singleton containing a real r. By the construction, r ∈ A∗ \

⋃
n Cn as

desired.

The attentive reader will have noticed that the previous argument gives even
strong properness of the poset PI , see [S]. A slight variation of the argument will
give < ω1-properness.
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By induction on α ∈ ω1 prove that the poset PI is α-proper. The successor step
is trivial on the account of the previously proved properness of PI . So suppose
that α is a limit ordinal, a limit of an increasing sequence α0 ∈ α1 ∈ α2 ∈ . . . and
for all n ∈ ω the αn-properness of the poset PI has been proved. Let A ∈ PI be
an arbitrary condition and let 〈Mβ : β ∈ α〉 be a continuous ∈-tower of countable
elementary submodels of a large enough structure such that A ∈ M0. As before,
it is enough to show that the set A∗ = {r ∈ A : for all β ∈ α the real r is
Mβ-generic} is I-positive, since it will be the required master condition for the
tower.
Suppose that {Cn : n ∈ ω} is a collection of closed sets in the ideal I. I must

produce a real r ∈ A∗ \
⋃

n Cn. Let M =
⋃

β∈α Mβ and let Dn : n ∈ ω be a list

of all open dense subsets of the poset PI in the modelM such that Dn ∈ Mαn+1,
and by induction on n ∈ ω build sets A = A0 ⊃ A1 ⊃ A2 ⊃ . . . so that for every
n ∈ ω, An+1 ∈ Dn∩Mαn+1, An+1 ⊂ {r ∈ A : the set {B ∈ PI∩Mβ : r ∈ B} is an
Mβ-generic filter, for all β ∈ αn}, and An+1 ∩ Cn = 0. To perform the inductive
step, first look at the set A∗

n = {r ∈ An : r is Mβ-generic for all αn−1 ∈ β ∈ αn}.
This set is Borel, it is I-positive by the αn-properness of the poset PI (it is the
only candidate for the master condition for the tower 〈Mβ : αn−1 ∈ β ∈ αn〉)
and it is in the model Mαn+1. As in the second paragraph of this proof it is now
possible to choose a set An+1 ⊂ A∗

n in Dn ∩ Mαn+1 with An+1 ∩ Cn = 0. Such
a set satisfies the inductive assumptions. Once the induction is complete, look
at the M -generic filter on PI ∩ M generated by the sequence of An’s. By the
previous lemma applied in the model M , the intersection of all the sets in this
filter is a singleton containing a real r. By the construction, r ∈ A∗ \

⋃
n Cn as

desired. �

It is well known that if I is a σ-ideal such that the forcing PI is proper, and
B  ṡ is a real, then by using a stronger condition C ⊂ B if necessary the name
ṡ can be reduced to a Borel function f : C → R such that C  ṡ = ḟ(ṙgen).
To see how this can be done, choose a countable elementary submodel M of a
large enough structure, let C be the set of all M -generic reals in the set B and
define f : C → R by f(r) = ṡ/r. The function f is Borel by Lemma 1.2 and an
absoluteness argument just like in the proof of the previous lemma shows that
this function will work.
The following theorem is assembled from results of Martin and Solecki and

appears in [S].

1.4 Lemma (ZFC+large cardinals). If I is a σ-ideal generated by closed sets,
and if A ⊂ R is an I-positive projective set of reals then A has a Borel I-positive
subset.

And the key tool for establishing Theorem 0.1 is

1.5 Lemma (ZFC+projective uniformization). Suppose I is a σ-ideal such that

(1) I is generated by a projective collection of projective sets,
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(2) every projective I-positive set has an I-positive Borel subset,
(3) the forcing PI is < ω1-proper in all forcing extensions.

If G ⊂ PI is a generic filter and V ⊆ V [H ] ⊆ V [G] is an intermediate model,
then V [H ] is a c.c.c. extension of V or else V [G] = V [H ].

Here (1) means that there is an integer n such that the ideal is generated by
boldface Σ1n sets and the set of all codes for boldface Σ

1
n sets in the ideal is itself

projective.

Proof: Let I be a σ-ideal satisfying the assumptions of the lemma. On the
account of (3) I can assume that the continuum hypothesis holds, because it can
be forced by a σ-closed notion of forcing, not changing the poset PI . Suppose
that B is a nowhere c.c.c. complete subalgebra of the completion of the poset PI .
I will prove that the generic real ṙ for the poset PI can be recovered from the
generic filter Ḣ ⊂ B.
First, a piece of notation: Suppose M is a countable elementary submodel of

a large enough structure and r is a real. I will write Ḣ ∩ M/r to denote the set
{b ∈ B ∩ M : for some set A ∈ PI ∩ M , A ≤ b and r ∈ A}. It is not difficult to

see that if the real r falls out of all I-small sets in the model M , then Ḣ ∩ M/r
will be a filter on B∩M , and if the real r is M -generic for the poset PI then this
filter will be actually M -generic. The distinction between these two cases is the
key point in the argument.

1.6 Claim. There is an ∈-sequence 〈Mk : k ∈ ω〉 of countable elementary sub-
models of a sufficiently large structure such that for every infinite set x ⊂ ω the
following set Ax is I-positive: Ax = {r ∈ R : k ∈ x ↔ the set Ḣ ∩ Mk+1/r is an
Mk+1-generic filter on B ∩ Mk+1}.

Suppose that the claim has been proved and Mk : k ∈ ω are the ascertained
models and M their union. Then for distinct infinite sets x, y ⊂ ω, the sets Ax

and Ay are disjoint and even more than that, if r ∈ Ax and s ∈ Ay are reals then

the filters Ḣ ∩ M/r and Ḣ ∩ M/s are distinct subsets of the poset B ∩ M . I am
going to find a I-positive Borel set B ⊂ R such that B ⊂

⋃
x Ax and for every

infinite set x ⊂ ω the intersection B ∩ Ax contains at most one element. This
will complete the proof since by an absoluteness argument between V and V [G],

B  ṙgen is the unique real r ∈ Ḃ such that Ḣ ∩ M̌ = (Ḣ ∩ M)/r. By another
absoluteness argument between V [H ] and V [G], this unique real must belong to
the model V [H ]. In other words B forces that ṙgen can be reconstructed from

Ḣ ∩ M̌ and so V [G] = V [H ].
To find the set B ⊂ R, use the argument of Lemma 1.2 to note that the relation

r ∈ Ax is Borel. Let U ⊂ [ω]ℵ0 ×R be a Σ1n universal set and using the projective
uniformization find a projective function f such that dom(f) = {x ⊂ ω : the
vertical section Ux of U belongs to the ideal I} and for each x ∈ dom(f) the
value f(x) is an element of the I-positive set Ax \ Ux. Look at the projective set
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rng(f) ⊂ R. This set must be I-positive since every generator of the ideal I is of
the form Ux for some infinite set x ⊂ ω and then f(x) ∈ rng(f) is a real that does
not belong to that generator. Now just let B ⊂ R be any Borel I-positive subset
of rng(f) using the assumption (2).

All that remains to be done is the verification of the claim. First construct
an ∈-tower 〈Nα : α ∈ ω1〉 of countable elementary submodels of a large enough
structure so that

(1) at successor ordinals α 〈Nβ : β ∈ α〉 ∈ Nα and at limit ordinals α ω1 ∩
Nα =

⋃
β∈α(ω1 ∩ Nβ);

(2) if α = ω1∩Nα then whenever possible subject to (1) the model Nα is such
that there is a sequence 〈N ′

β : β ∈ ω1〉 in the model Nα with Nβ = N ′
β for

all β ∈ α. The tower will necessarily be discontinuous at such ordinals;
(3) at limit ordinals α where (2) does not happen Nα =

⋃
β∈α Nβ .

Let me denote the set of all points α ∈ ω1 at which (2) happens by D. The set
D is uncountable. For if it were not, consider a countable elementary submodel
M of the structure containing the sequence 〈Nα : α ∈ ω1〉. Letting α = ω1 ∩ M
it should be that α is greater than all points in D but at the same time, α ∈ D
as witnessed by the model M . Contradiction.

Now let 〈αk : k ∈ ω〉 be the first ω many ordinals in the set D, and let
Mk = Nαk

for every number k ∈ ω. This is the required sequence of models,
but why should the sets Ax be I-positive? For any infinite set x ⊂ ω consider
the continuous ∈-tower Tx indexed by the ordinals in the set {αk+1 : k ∈ x} ∪⋃
{(αk, αk+1] : k /∈ x} defined in the following way. If β is an ordinal in this
set then the β-th model on this tower is just Nβ unless β = αk+1 for k /∈ x,
where the β-th model is

⋃
γ∈β Nγ as dictated by the continuity requirement. Let

Bx = {r ∈ R : r is generic for every model on the tower Tx}. This set is I-positive
by the < ω1-properness of the poset PI . The proof of the claim will be complete
once I show that Bx ⊂ Ax.

Let r ∈ Bx be a real. I must verify that r ∈ Ax. Well, if k ∈ x then the model
Mk+1 is on the tower Tx, the real r isMk+1-generic and the set Ḣ∩Mk+1/r is an
Mk+1-generic filter on B ∩ Mk+1 as required in the definition of the set Ax. But
what if k /∈ x? Look at the modelMk+1 and choose in it a sequence 〈N

′
β : β ∈ ω1〉

such that for all β ∈ αn+1 Nβ = N ′
β holds. Now since the algebra B is nowhere

c.c.c. and of density ℵ1 = 2
ℵ0 , it must be that B  for cofinally many ordinals

β ∈ ω1 the filter Ḣ ∩ Ň ′
β is not Ň ′

β-generic. But for all ordinals β between αk and

αk+1 = ω1∩Mk+1 the models N ′
β = Nβ are on the tower Tx and so both the real

r and the filter Ḣ ∩Nβ/r are Nβ-generic. This means that the filter Ḣ ∩Mk+1/r
cannot be Mk+1-generic by the elementarity of the model Mk+1. Thus r ∈ Ax as
required. �

The assumptions of the Lemma feel somewhat ad hoc. I do not have any
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example of an ideal I satisfying the assumptions that would not be generated
by analytic sets. I do not have an example of a definable ideal I such that the
properness of the poset PI would not be absolute throughout forcing extensions.
I also do not have an example of a definable ideal I such that the forcing PI

is proper but not < ω1-proper. The problem here is that properness or < ω1-
properness do not seem to be expressible as projective properties of the ideals.
The conjecture though is that even in the presence of large cardinals there are
such ideals.
The Lemma can be applied to posets like Laver forcing, if there is a suitable

determinacy argument that verifies (1) and (2) of the Lemma for the poset. In
the case of Laver forcing this has been done in [Z1, Section 3.2]. There is a fine
line dividing the definable forcings into two groups: The PI ’s for simply generated
ideals I, and PI ’s for ideals I for which no generating family consisting of simple
sets can be found.

1.7 Example. Assume that suitable large cardinals exist. Let I be the ideal
of sets of subsets of ω which are nowhere dense in the algebra Power(ω) modulo
finite. Then for every n ∈ ω there is m ∈ ω and a boldface Σ1m set in I which is
not a subset of a Σ1n set in I.

Proof: Consider the Mathias forcing. The results of [Z1, Section 3.4] show
that this forcing is equivalent to PI , and that every projective I-positive set has a
Borel I-positive subset. Also the Mathias forcing is < ω1-proper. If the statement
in 1.6 failed then Lemma 1.4 could be applied to say that all the intermediate
extensions of the Mathias real extension are c.c.c. However, Mathias forcing can
be decomposed into an iteration of a σ closed and c.c.c. forcing, and the first step
in that iteration is certainly not c.c.c. A contradiction. �

To argue for Theorem 0.1, fix a σ-ideal I σ-generated by a projective collection
of closed sets. Lemmas 1.2 and 1.3 show that the assumptions of Lemma 1.4 are
satisfied and so if rgen is a V -generic real for the poset PI and s ∈ V [rgen] is
an arbitrary real, then V [s] is a c.c.c. extension of V or V [s] = V [rgen]. Let us
investigate the case of V [s] being a c.c.c. extension of V . Such a real s is obtained
through a ground model I-positive Borel set B and a Borel function f : B → R

such that B  ḟ(ṙgen) = ṡ. Move back into the ground model and let J = {A ⊂ R

Borel: B  ṡ /∈ Ȧ}. Clearly, J is a σ-ideal of Borel sets and the poset PJ is c.c.c.:
an uncountable antichain in it would give an uncountable antichain in the algebra
generated by the name ṡ. Since PJ is c.c.c. and the real ṡ is forced to fall out
of all J-small ground model coded Borel sets, the real ṡ is actually forced to be
PJ -generic. Now I will show that in a Cohen extension there is a generic real for
the poset PJ , which will conclude the argument since all complete subalgebras of
the Cohen algebra have countable density and therefore are Cohen themselves.
Let M be a countable elementary submodel of some large structure containing

all the necessary information and look at the forcing PI ∩ M . This is a count-
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able notion of forcing adding a canonical single real, which by an argument from
Lemma 1.3 is forced to fall out of all ground model coded I-small sets. Force
with the poset PI ∩ M below the condition B, getting a real d ∈ B; so V [d] is a
Cohen generic extension of V . Look at the real f(d). Whenever A is a ground
model coded J-small set, the set f−1A is a ground model coded I-small set and
so d /∈ f−1A and f(d) /∈ A. Thus the real f(d) falls out of all ground model coded
J-small sets and must be generic for PJ as required.
The last remark. Turning the history of forcing on its head, the understanding

of the forcing PI means finding a determinacy argument that will produce a dense
subset of PI consisting of combinatorially manageable sets, for example perfect
sets in the case of Sacks forcing. Remarkably, in all known cases this also leads
to the proof of the following proposition: for every I-positive Borel set B there is
a Borel function f : R → B such that the preimages of I-small sets are I-small.
This property of the ideal I is critical in the proof that the covering number for
I can be isolated, see [Z1]. Can such a feat be repeated for ideals like the closed
measure zero ideal?
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