
Commentationes Mathematicae Universitatis Carolinae

Rosa Anna Marinosci
Homogeneous geodesics in a three-dimensional Lie group

Commentationes Mathematicae Universitatis Carolinae, Vol. 43 (2002), No. 2, 261--270

Persistent URL: http://dml.cz/dmlcz/119318

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119318
http://project.dml.cz


Comment.Math.Univ.Carolin. 43,2 (2002)261–270 261

Homogeneous geodesics in a three-dimensional Lie group

Rosa Anna Marinosci

Dedicated to Professor Oldřich Kowalski on the occasion of his 65th birthday

Abstract. O. Kowalski and J. Szenthe [KS] proved that every homogeneous Riemannian
manifold admits at least one homogeneous geodesic, i.e. one geodesic which is an orbit
of a one-parameter group of isometries. In [KNV] the related two problems were studied
and a negative answer was given to both ones: (1) Let M = K/H be a homogeneous
Riemannian manifold where K is the largest connected group of isometries and dimM ≥

3. Does M always admit more than one homogeneous geodesic? (2) Suppose that
M = K/H admits m = dimM linearly independent homogeneous geodesics through the
origin o. Does it admit m mutually orthogonal homogeneous geodesics? In this paper
the author continues this study in a three-dimensional connected Lie group G equipped
with a left invariant Riemannian metric and investigates the set of all homogeneous
geodesics.
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1. Introduction

Let (M, g) be a homogeneous Riemannian manifold, i.e., a connected Riemann-
ian manifold on which the largest connected group K of isometries acts transi-
tively. Then M can be interpreted as a homogeneous space (K/H, g) where H is
the isotropy group at a fixed point o of M . In this situation the Lie algebra k of
K has an ad(H)-invariant direct sum decomposition (= reductive decomposition)
k = m ⊕ h, where m ⊂ k is a linear subspace of k and h is the Lie algebra of
H ([KoNo]). In general such decomposition is not unique. The ad(H)-invariant
subspace m can be naturally identified with the tangent space To(M) via the
projection p : K → K/H .
A geodesic γ(t) through the origin o of M = K/H is called homogeneous if it

is an orbit of a one-parameter subgroup of K, that is

(1) γ(t) = exp(tZ)(o), t ∈ R,

where Z is a nonzero vector of k.
A homogeneous Riemannian manifold is called a g.o. space if all geodesics

are homogeneous with respect to the largest connected group of isometries. All
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naturally reductive spaces ([KoNo]) are g.o. spaces, but the converse does not
hold. In [Kp] A. Kaplan proved the existence of g.o. spaces that are in no way
naturally reductive; the examples of A.Kaplan are generalized Heisenberg groups
with two-dimensional center. O. Kowalski and L. Vanhecke made an explicit
classification of all naturally reductive spaces up to dimension five ([KPV]). In
[KV] they gave a classification of all g.o. spaces, which are in no way naturally
reductive, up to dimension six.
About the existence of homogeneous geodesics in a general homogeneous Rie-

mannian manifold, we have, at first, a result due to V.V. Kajzer who proved that
a Lie group endowed with a left-invariant metric admits at least one homogeneous
geodesic ([Ka]). More recently O. Kowalski and J. Szenthe extended this result
to all homogeneous Riemannian manifolds ([KS]).
Hence the study of the set of all homogeneous geodesics of a general homoge-

neous Riemannian manifold arises as a natural problem. In [KNV] O. Kowalski,
S. Nikčević and Z. Vlášek started this study by considering the following problems:

(1) LetM = K/H be a homogeneous Riemannian manifold whereK is the largest
connected group of isometries and dimM ≥ 3. Does M always admit more than
one homogeneous geodesic?

(2) Suppose that M = K/H admits m = dimM linearly independent homo-
geneous geodesics through the origin o. Does it admit m mutually orthogonal
homogeneous geodesics?

They gave a negative answer to both ones by considering the case of a three-
dimensional non-unimodular Lie group G = K/H endowed with a left-invariant
Riemannian metric g and with distinct Ricci principal curvatures.
In the present paper the author extends the study for the case of a three-

dimensional non-unimodular Lie group whose principal Ricci curvatures are not
all distinct. Then she studies homogeneous geodesics in a three-dimensional uni-
modular Lie group. The main results are resumed in Theorems 3.1 and 3.2.

2. Preliminaries concerning homogeneous geodesics in homogeneous
Riemannian manifolds

As in the introduction, let (M = K/H, g) be a homogeneous Riemannian
manifold with a fixed origin o. Let k and h be the Lie algebras of K and H
respectively and let

(2) k =m ⊕ h

be a reductive decomposition; the canonical projection p : K → K/H induces an
isomorphism between the subspace m and the tangent space To(M) and conse-
quently the scalar product go on To(M) induces a scalar product B on m which
is Ad(H)-invariant.
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Definition 2.1. A nonzero vector Z ∈ k is called a geodesic vector if the curve

(1) is a geodesic.

In the next section we shall use the following lemma which gives a characteri-
zation of geodesic vectors ([G], [KN], [KV]).

Lemma 2.2. A nonzero vector Z ∈ k is a geodesic vector if and only if

(3) B([Z, W ]m, Zm) = 0

for all W ∈ m (the subscript m denotes the projection into m).

Now if we want to find all homogeneous geodesics of the homogeneous Rie-
mannian manifold (M = K/H, g), we have to calculate all geodesic vectors of the
Lie algebra k. For this purpose we shall use the technique presented in [KNV]: at
first we calculate the connected component K of the full isometry group I(M),
or at least the corresponding Lie algebra k. Then we find a decomposition of the
form (2) and look for the geodesic vectors in the form

(4) Z =

r∑

i=1

xiei +

s∑

j=1

ajAj ,

where {ei}i=1,2,...,r is a convenient basis of m and {Aj}j=1,2,...,s is a basis of h.
The condition (3) produces a system of r quadratic equations for the variables

xi and aj when we write condition (3) takingW = ei, i = 1, 2, . . . , r. Then we see
for which values of x1, x2, . . . , xr and a1, a2, . . . , as this system is satisfied. The
geodesic vectors correspond to those solutions for which x1, x2, . . . , xr are not all
equal to zero.
A finite family of geodesics through the origin o is said to be linearly indepen-

dent if the corresponding initial tangent vectors are linearly independent. Then
the following proposition holds ([KNV]):

Proposition 2.3. A finite family {γ1, γ2, . . . , γk} of homogeneous geodesics
through o ∈ M is orthogonal or linearly independent, respectively, if the m-

components of the corresponding geodesic vectors are orthogonal, or linearly in-

dependent, respectively.

3. Homogeneous geodesics in three-dimensional Lie groups

Let G be a three-dimensional connected Lie group endowed with a left invariant
metric g and let ∇ be its Riemannian connection with Ricci tensor ̺. Write G
in the form G = K/H , where K is the largest connected group of isometries of
(G, g) and consider the reductive decomposition

(5) k =m ⊕ h ,
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where k is the Lie algebra of the Lie group K, h is the Lie algebra of the Lie
group H and m is a real vector space isomorphic to the tangent space Te(G)
(e = identity of G) or equivalently to the Lie algebra g of G. Because G = K/H

itself is a group space, it admits a canonical connection ∇̃ with the torsion tensor

T̃ (X, Y ) = −[X, Y ] and curvature tensor R̃ = 0 ([KoNo]). The tensor D = ∇−∇̃
satisfies ([Kw]):

(6) 2g(DY X, Z) = g(T̃ (X, Y ), Z) + g(T̃ (X, Z), Y ) + g(T̃ (Y, Z), X).

The Lie algebra h consists of all skew-symmetric endomorphisms A of g such
that A(g) = 0, A(R) = 0, A(DnR) = 0 for n = 1, 2, . . . , where R is the Riemann-
ian curvature (note that since G is three-dimensional A(R) = 0 is equivalent to
A(̺) = 0 and A(DnR) = 0 is equivalent to A(Dn̺) = 0).
The algebra h contains as its subalgebra the Lie algebra d of all skew-symmetric

derivations of g.

We want to describe all geodesic vectors of (G, g), which are contained in k

according to the definition. For this purpose we shall distinguish two cases:

(I) G is an unimodular Lie group;

(II) G is a non-unimodular Lie group.

CASE (I): G unimodular.

According to a result due to J. Milnor (see [M, Theorem 4.3, p. 305]) there
exists an orthonormal basis {e1, e2, e3} of the Lie algebra g such that

[e1, e2] = λ3e3, [e2, e3] = λ1e1, [e3, e1] = λ2e2.

The basis {e1, e2, e3} diagonalizes the Ricci tensor ̺ and the principal Ricci cur-
vatures are given by

̺1 = 2µ2µ3, ̺2 = 2µ1µ3, ̺3 = 2µ1µ2,

where
µi = (1/2)(λ1 + λ2 + λ3)− λi,

for each i = 1, 2, 3.
We note, by using Lemma 2.2, that e1, e2, e3 are geodesic vectors.
Now we must calculate the Lie algebra h of H .
A skew-symmetric endomorphism A : g → g of the Lie algebra g is of the form:

A(e1) = ae2 + be3, A(e2) = −ae1 + ce3, A(e3) = −be1 − ce2.

The condition A(̺) = 0 gives in particular

̺(A(ei), ej) + ̺(ei, A(ej)) = 0
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for each i, j = 1, 2, 3; so we get

(7) a(̺2 − ̺1) = 0, b(̺1 − ̺3) = 0, c(̺2 − ̺3) = 0.

From now on, let us suppose that all λi are distinct . Then all µi are distinct ,
as well.
If µ1µ2µ3 6= 0, then ̺1̺2̺3 6= 0 and ̺i are all distinct; consequently from (7)

we get a = b = c = 0 and h = {0}, hence all geodesic vectors are contained in
the Lie algebra g.
Suppose µ1µ2µ3 = 0; without loss of generality let µ1 = 0.
Condition µ1 = 0 implies ̺2 = ̺3 = 0; we note that ̺1 6= 0 because λi are all

distinct, consequently from (7) we get a = b = 0 and the endomorphism A is of
the form

A(e1) = 0, A(e2) = ce3, A(e3) = −ce2.

The endomorphim A is not a derivation of the Lie algebra g in general; in fact
condition A([e1, e2]) = [A(e1), e2]+[e1, A(e2)] is satisfied if and only if c = 0. Now
each endomorphism A ∈ h satisfies the condition A(D̺) = 0. An easy calculation
gives for D the following expression:

De1e1 = 0, De1e2 = −λ3e3, De1e3 = λ2e2,

De2e1 = 0, De2e2 = 0, De2e3 = −λ2e1,

De3e1 = 0, De3e2 = λ3e1, De3e3 = 0.

D̺ and A(D̺) are defined by

D̺(X, Y, Z) = −̺(DXZ, Y )− ̺(X, DY Z),

A(D̺)(X, Y ;Z) = −D̺(A(X), Y, Z)− D̺(X, A(Y ), Z)− D̺(X, Y, A(Z));

in particular we see that A(D̺)(e1, e2; e2) = 0 implies c = 0; consequently the
Lie algebra h is equal to zero, hence all geodesic vectors can be found in g.
By using Lemma 2.2 a vector X = x1e1+ x2e2+ x3e3 of g is a geodesic vector

if and only if g([x1e1+x2e2+x3e3, ei], x1e1+x2e2+x3e3) = 0 for each i = 1, 2, 3.
So we get:

(−λ3 + λ2)x3x2 = 0,

(λ3 − λ1)x3x1 = 0,

(λ1 − λ2)x1x2 = 0

or equivalently (because λi are all distinct):

x2x3 = 0,

x1x3 = 0,

x1x2 = 0.

We conclude that all geodesic vectors X are those from the set span{e1} ∪
span{e2} ∪ span{e3}.
The above study allows us to announce the following theorem:
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Theorem 3.1. In a three-dimensional, connected and unimodular Lie group G
endowed with a left invariant metric g, there always exist three mutually orthog-
onal homogeneous geodesics through each point. Moreover, if all λi are distinct,

there are no other homogeneous geodesics.

Remark. If λi are not all distinct, we can suppose λ2 = λ3 without loss of
generality. If λ1 = λ2 = λ3 we have ̺1 = ̺2 = ̺3 and the space is Riemannian
symmetric. Suppose now λ1 6= λ2 = λ3, then µ1 6= µ2 = µ3. If µ2 = µ3 = 0
then ̺1 = ̺2 = ̺3 = 0 and the space is Riemannian symmetric. Thus suppose
µ2 = µ3 6= 0, then we have ̺1 6= ̺2 = ̺3 and from (7) a = b = 0. The
endomorphism A takes on the form

A(e1) = 0, A(e2) = ce3, A(e3) = −ce2.

In this case, the endomorphism A is a derivation of the Lie algebra g. We see
that the algebras h and d coincide, and h is spanned by the endomorphim

A′(e1) = 0, A′(e2) = e3, A′(e3) = −e2.

A vector X = x1e1+x2e2+x3e3+cA′ is a geodesic vector if and only if g([x1e1+
x2e2 + x3e3 + cA′, ei], x1e1 + x2e2 + x3e3) = 0 for each i = 1, 2, 3.
So we get:

(−λ3 + λ2)x3x2 = 0,

(λ3 − λ1)x3x1 + cx3 = 0,

(λ1 − λ2)x1x2 − cx2 = 0.

Since λ2 = λ3 we see from the above system that for every choice of x1, x2, x3
the vector X = x1e1 + x2e2 + x3e3 + (λ1 − λ2)x1A

′ is a geodesic vector, hence
G = K/H is a geodesic orbit space or equivalently a naturally reductive space
(because in dimension three the two classes coincide) ([KPV]).

CASE (II): G non-unimodular.

According to a result due to J. Milnor (see [M, Lemma 4.10, p. 309]) there
exists an orthogonal basis {e1, e2, e3} of the Lie algebra g such that

[e1, e2] = αe2 + βe3, [e2, e3] = 0, [e1, e3] = γe2 + δe3,

where α, β, γ, δ are real numbers such that α+ δ = 2 and αγ + βδ = 0.
The above basis diagonalizes the Ricci form and the principal Ricci curvatures

are given by

̺1 = −α2 − δ2 − (β + γ)2,

̺2 = −α(α+ δ) + (γ2 − β2)/2,

̺3 = −δ(α+ δ) + (β2 − γ2)/2.
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Putting
α = 1 + ξ, δ = 1− ξ, β = (1 + ξ)η, γ = −(1− ξ)η,

the principal curvatures take the form

̺1 = −2(1 + ξ2(1 + η2)),

̺2 = −2(1 + ξ(1 + η2)),

̺3 = −2(1− ξ(1 + η2)).

We note, by using Lemma 2.2, that e1 is a geodesic vector.
A skew-symmetric endomorphism A : g → g of the Lie algebra g is of the form:

A(e1) = ae2 + be3, A(e2) = −ae1 + ce3, A(e3) = −be1 − ce2.

The condition A(̺) = 0 gives in particular

̺(A(ei), ej) + ̺(ei, A(ej)) = 0

for each i, j = 1, 2, 3; so we get

(8) a(̺2 − ̺1) = 0, b(̺1 − ̺3) = 0, c(̺2 − ̺3) = 0.

The case ̺1, ̺2, ̺3 all distinct has been studied in [KNV] by O. Kowalski,
S. Nikčević and Z. Vlášek. They proved the following theorem:

Theorem A. Let α, β, γ, δ be such that all Ricci principal curvatures are
distinct. Denote D = (β + γ)2 − 4αδ. Then up to a parametrization, the space
(G, g) admits

(a) just one homogeneous geodesic through a point, if D < 0,
(b) just two homogeneous geodesics through a point, if D = 0; they are
mutually orthogonal,

(c) just three homogeneous geodesics through a point, if D > 0; they are
linearly independent but never mutually orthogonal.

We remark that the case ̺2 = ̺3 6= ̺1 does not happen (in fact ̺2 = ̺3 ⇔
ξ(1 + η2) = 0⇔ ξ = 0⇔ ̺1 = ̺2 = ̺3).
Suppose ̺1 = ̺2 6= ̺3. In this case we have ξ = 1 and the Ricci curvatures

assume the form:

̺1 = −2(2 + η2),

̺2 = −2(2 + η2),

̺3 = −2η2.
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From (8) we get b = c = 0, so the endomorphism A takes on the form:

A(e1) = ae2, A(e2) = −ae1, A(e3) = 0.

Now A is not (in general) a derivation of the Lie algebra g, in fact we have

A([e1, e2]) = [A(e1), e2] + [e1, A(e2)]⇔

A(αe2 + βe3) = [ae2, e2] + [e1,−ae1]⇔

αae1 = 0⇔

αa = 0⇔ a = 0

because α = ξ + 1 = 2.
We must check for which values of “a” the endomorphism A satisfies the con-

dition A(D̺) = 0. An easy calculation gives for the tensor D the following
expression

De1e1 = 0, De1e2 = −2e2 − ηe3, De1e3 = −e2,

De2e1 = ηe3, De2e2 = 0, De2e3 = −ηe1,

De3e1 = −ηe2, De3e2 = ηe1, De3e3 = 0.

Note that A(D̺)(e1, e2, e1) = 0 implies a = 0; in fact

0 = A(D̺)(e1, e2, e1)

= −(D̺)(Ae1, e2, e1)− (D̺)(e1, Ae2, e1)− (D̺)(e1, e2, Ae1)

= −(D̺)(ae2, e2, e1)− (D̺)(e1,−ae1, e1)− (D̺)(e1, e2, ae2)

= ̺(Dae2e1, e2) + ̺(ae2, De2e1) + ̺(De1ae2, e2) + ̺(e1, De2ae2)

= −a2̺2 ⇔ a = 0 (because ̺2 = −2(2 + η2) 6= 0).

We conclude that h = {0} and all geodesic vectors are contained in g. A vector

X = x1e1 + x2e2 + x3e3 of g is a geodesic vector if and only if g([x1e1 + x2e2 +
x3e3, ei], x1e1 + x2e2 + x3e3) = 0 for each i = 1, 2, 3. This condition leads to the
system of equations

x2(x2 + ηx3) = 0, x1(x2 + ηx3) = 0.

So, a vector X of g is a geodesic vector if and only if:

- X ∈ span(e1, e3) for η = 0.

- X ∈ span(e1) ∪ span(e3) ∪ span(ηe2 − e3) for η 6= 0.



Homogeneous geodesics in a three-dimensional Lie group 269

Making an analogous study for the case ̺1 = ̺3 6= ̺2 we obtain the following
system of equations:

x3(ηx2 − x3) = 0, x1(x3 − ηx2) = 0.

So, a vector X of g is a geodesic vector if and only if

- X ∈ span(e1, e2) for η = 0.

- X ∈ span(e1) ∪ span(e2) ∪ span(e2 + ηe3) for η 6= 0.

As a consequence we can state the following theorem:

Theorem 3.2. Let G be a three-dimensional connected non-unimodular Lie
group endowed with a left invariant metric g and with two distinct principal
curvatures. If η 6= 0, then there exist always three linearly independent ho-
mogeneous geodesics through each point which are never mutually orthogonal.

Moreover, there are no other homogeneous geodesics. If η = 0, then the geodesic
vectors form a two-dimensional subspace of the Lie algebra g of G, i.e., there
are infinitely many homogeneous geodesics through each point but every three of

them are linearly dependent.
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